
Regular type inference into the OCaml Interpreter -
M1 Project Report

Bastien ROUSSEAU (ENS Rennes)
supervised by Thomas GENET (CELTIQUE - IRISA Rennes)

1 Introduction

1.1 The project

This project builds upon Mathieu Poirier’s master project. It consists of carrying out the integration of
Timbuk - a lightweight formal verification tool for functional program - into the OCaml interpreter.

The purpose of Timbuk is to allow non-experts developers to have a formal verification tool. Indeed,
most of the existing tools for the formal verification like proof assistants (as Coq or Isabelle/HOL) or anno-
tation systems (as “Liquid Types”) needs a high level of expertise. Thus, the objective is to equip the OCaml
interpreter with a verification mechanism as automatic as testing device, but with formal guarantees.

The first part of my work during the project was to dive into the understanding of Timbuk, the different
parts of his inputs. The aim was at have an overview of the tool. The second part of my work was to
focus on a particular issue of the link between the OCaml interpreter and Timbuk: the transformation of a
rewriting system with priority order into a rewriting system without priority order. This transformation is
called disambiguation. To fulfill this second task, I read papers for two different methods ([Kra08; CM19])
and implemented an OCaml prototype for both of them. Finally, I implemented the best method into the
OCaml interpreter, in the continuation of Mathieu Poirier’s project.

1.2 Contents

In section [2], I will present an overview of Timbuk and develop the link between Timbuk and the OCaml
interpreter. I will recall in more details some important definitions over the term rewriting system which
is the input of Timbuk. In section [3], I will give an intuition of the Timbuk’s algorithm used to verify
properties. Finally, in section [4], I will focus on the disambiguation problem. I’ll compare the two methods
I studied and give more details on the one we decided to implement.

2 Timbuk4

Timbuk4 [HGJ20] is a formal verification tool based on term rewriting systems and tree automata. It allows
to prove properties on functional program with high-order functions. In this section, we will focus on the
following example:

Example 1. We define the type ab with type ab = A | B. We want to prove that the function remove e l
delete all the occurrences of the element e of type ab in the list l. l is a list of type ab list. Thus, the property
we want to prove is:

forall (e:ab) (l:ab list). not (member e (remove e l))

2.1 From the interpreter to Timbuk

In the OCaml’s interpreter, the user defines types and functions. He can also define properties working
on types and functions he has previously defined. All the expressions evaluated by the interpreter are
intercepted and transformed to perform the verification with Timbuk.

Timbuk input’s are:



1. A term rewriting system (TRS)
2. A type automaton
3. A property to prove (Pattern)

Figure 1 shows how the OCaml interpreter interacts with Timbuk.

Fig. 1. Timbuk Inputs.

Remarks In the following report, we will mainly focus on the TRS. We will not detail the type automaton, which is
the data structure used to represent types.

Since Timbuk works with purely functional program, we firstly detail the language and the features we
consider for the project.

2.2 VerySimpleOCaml

VerySimpleOCaml is the subset of OCaml considered for the project. VerySimpleOCaml is inspired by
OCamlLIGHT [Owe], a purely functional part of OCaml. So that, it excludes module and objects. More-
over, it is even more restrictive than OCamlLIGHT . Informally, we can describe the supported features of
VerySimpleOCaml with:

– definitions
• variant data types (e.g., type t = I of int | C of char)
• parametric type constructors (e.g., type ’a t = C of ’a)
• recursive and mutually recursive combinations of the above
• values

– lists, boolean, tuples



– control structures: if . . . then . . . and if . . . then . . . else . . .
– let-binding
– functions (recursive, mutually recursive, anonymous functions)
– pattern-matching (including nested pattern-matching)

Table 1 presents a short summary of the features supported or not by VerySimpleOCaml, in compari-
son with OCamlLIGHT .

Present Missing
Native types with constructors (list, bool) Native types without constructors (int, floats, . . . )

Tuples Record types
Parametric and Recursive User defined types Sequencing

Functions Mutable references
Pattern-Matching Exceptions

Polymorphic equality with, while, for, assert, try, raise expressions
Table 1. Functionalities of VerySimpleOCaml

2.3 TRS

TRS is the semantic representation of the program. Each OCaml function definition is translated into a set
of rewriting rules. The union of all theses rules is called term rewriting system (TRS).

Definition 1. Let F a finite alphabet and X a set finite set of variables. We note T (F , X ) the set of terms.

– A rewriting rule is a pair l→ r where l, r ∈ T (F , X ).
– A term rewriting system 〈F ,R〉 is a pair whereR is a set of rewriting rule on F .
– A position on a term t is a word on N which refers to a sub-term of t. The set of all positions of the term t, noted
Pos(t), is defined as follow:

Pos(x) = {ε}, x ∈ X
Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n ∧ p ∈ Pos(ti)}, t1, . . . , tn ∈ T (F ,X )

– For p ∈ Pos(t), we denote t|p the sub-term of t at the position p and t[s]p the term t where the sub-term at the
position p has been replaced by s.

– A substitution σ : X → T (F ,X ) is a map from variables to terms.
– Let s, t ∈ T (F , X . If it exists a rule l → r ∈ R, a position p ∈ Pos(s) and a substitution σ such that
lσ = s|p and t = t[rσ]p, then we can apply the rule. We write s→R t this rewriting relation and s→∗R t the
reflexive-transitive closure of the relation.

Informally, if smatches with l for a certain position and a certain substitution, we can apply the rewriting
rule l→ r of the rewriting systemR, and obtain the resultant term t.

Example 2. LetF = {remove, nil, cons, ite, A,B, true, false} andX = {E,L,X, Y }. remove E nil ∈ T (F ,X )
is a term and nil ∈ T (F ,X ) is also a term. So that, we can create the following rewriting rule: remove(E,nil)→
nil. Figure 2 encodes the remove function in OCaml. Its corresponding TRS is described on the Figure 3

Let’s apply some rewriting rules on the term remove A cons(A, nil).

1. By the rule (2), we obtain the term ite(eq(A,A), remove(A,nil), ns(A, remove(A,nil))).
2. By the rule (5), the next term is ite(true, remove(A,nil), cons(A, remove(A,nil))).
3. By the rule (3), the next term is remove(A,nil).
4. By the rule (1), the final term is nil.

We will now focus on the third input of OCaml, the pattern.



l e t rec remove e l =
match l with
| [ ] −> [ ]
| h : : t −> i f ( x=e )

then ( remove e r )
e lse x : : ( remove e r )

Fig. 2. Function remove with OCaml

remove(E,nil) → nil (1)

remove(E, cons(X,L)) → ite(eq(X,E), remove(E,L), cons(X, remove(E,L)))
(2)

ite(true,X, Y ) → X (3)

ite(false,X, Y ) → Y (4)

eq(A,A) → true (5)

eq(B,B) → true (6)

eq(A,B) → false (7)

eq(B,A) → false (8)

Fig. 3. Term rewriting system encoding the remove function previously defined

2.4 Pattern

To prove a property, we need to define it. Actually, the property is a term, called pattern. Proving a property
means to type correctly the pattern.

Example 3. Suppose that we already have the predicate (member e l) which says if e belongs to list l.
Considers the following verification request:

(forall (e:ab) (l:ab list). not(member e (remove e l)))

Timbuk will try to prove that the term

forall (e:ab) (l:ab list). not(member e (remove e l))

can only be typed with true. In other words, forall ab list l, if we remove the occurrences of an element e
with the function remove, then the element e no longer belongs to the list l. This is the expected behavior
for the function remove.

Since we have defined the input of Timbuk, it is now possible to discuss the algorithm.

3 Timbuk - Type Inference Algorithm

In this section, I give an intuition of the algorithm used by Timbuk4 [HGJ20] to type a pattern.

3.1 Abstract interpretation

Proving a property about a pattern is like computing the set of reachable terms w.r.t the given TRS R.
However, this set is generally infinite. Thus, it is not computable. To tackle the problem, Timbuk uses an
abstract interpretation such that

– the concrete domain is the set of terms



– the abstract domain Σ# is the set of regular language on the concrete terms
– the abstraction function ∆# is a TRS which defines how the concrete terms are rewritten into abstract

terms
– the abstract semanticR# is a TRS on the abstract terms.R# is extracted fromR.

Let s, t ∈ T (F ,X ), s#, t# ∈ Σ#. Suppose that s →∆# s#. The abstract semantic R# must respect the
following property:

s→R t⇒ s# →R#∪∆# t#

In other words, if the concrete semantic R rewrites the terms s into t and if s# is the abstract term of
s, then we can rewrite s# into t# (which is the abstract term of t) w.r.t the abstract semantic R#. Figure 4
summarizes the property.

Fig. 4. Abstract interpretation of rewriting sequences.

As said previously, the abstract terms are regular languages. In fact, if s →∆# s#, we can say that s# is
a regular language which contains s. An example of ∆# and s# is given below.

Since Timbuk is a fully automated verification system, Σ# , ∆# and R# are not known and need to be
inferred. To do that, Timbuk uses a type system with type annotation. Let s# be the abstract term of s again.
Let X be a variable in a pattern. We note X : s# if X is one of the concrete term of s#. Finally, to determine
which s# is the correct abstraction for X , Timbuk will infer, modularly (ie. function by function), R# and
∆# such that they respect the previous property. In reality, types are represented by tree automaton, and
the inference algorithm is based on tree automata completion algorithm ([GHJ18; HGJ20]).

To give a better intuition of the inference procedure, we detail an example of the Timbuk output.

3.2 Example with Timbuk4

Timbuk uses term rewriting system and type automaton to types the given pattern.

Example 4. Take back the example of the function remove on ab list. We want to prove that the following
pattern can only be typed with the language #true which only contains true:

not (member A(remove A l))

Figure 5 is the current output given by Timbuk4 for the pattern (for the sake of readability, some rules
were removed and variables were renamed).

Let’s explain how we can interpret the output, and how Timbuk constructs ∆# andR#:



Value abstraction ∆#:
true → #true
false → #false
A → #a
B → #b
nil → #b_list
cons(#b, #b_list) → #b_list
cons(#b, #ab_list) → #ab_list
cons(#a, #ab_list) → #ab_list
cons(#a, #b_list) → #ab_list

TRS abstraction R#:
not(#false) → #true
member(#a, #b_list) → #false
remove(#a, #ab_list) → #b_list
ite(#true, #b_list, #ab_list) → #b_list
ite(#true, #b_list, #b_list) → #b_list
ite(#false, #ab_list, #b_list) → #b_list
ite(#false, #b_list, #b_list) → #b_list

eq(#a, #b) → #false

Typed patterns:
not(member(A:#a, remove(A:#a, ’2:#ab_list):#b_list):#false):#true

Fig. 5. Output of Timbuk4

1. Timbuk wants to separate possible types for a certain variable X in the pattern not(X). Here, the possi-
ble types for X are only #true and #false. Since the goal is to prove that not(X):#true, Timbuk creates
a new abstract type #false (to understand, the regular language which describes the concrete values
{false}). Timbuk discovers that #true is the only possible type to prove the goal.

2. Thus, Timbuk infers that member A (remove A l) can only be type with #false. We can write
member A (remove A l) : #false

3. Now, Timbuk tries to separate possible types for the term member A Y. Timbuk creates a new type #a
for A. Then, Timbuk creates a new abstract type #b_list whose language is the set of ab_list with no A.
Then, if Y : #b_list, we are sure that (member A:#a Y:#b_list) has type #false.

4. Thus, Timbuk infers that the term remove A l must be typed with #false
5. Timbuk iterate this procedure on each terms, and so on . . .

4 Disambiguation

We have discussed the formal verification tool Timbuk. We will now focus on an issue about the link be-
tween the OCaml interpreter and Timbuk, more precisely with the TRS.

4.1 Motivation

Generally, The OCaml pattern-matching transformation into its corresponding term rewriting system can-
not be direct. In a TRS, it is possible to apply any rule since the term matches with the left-side of the rule.
In the OCaml pattern matching, only one rule is applied: the first rule of the list which matches with the
term. The following example illustrates the issue.

Example 5. We can assume that we have a type nat = Z | S of nat. We can also assume that we have
a function is_zero defined by OCaml pattern-matching as follow:



l e t rec i s _ z e r o n =
match n with
| Z −> true
| _ −> f a l s e

Fig. 6. Function is_zero with OCaml pattern-matching

If we naively transform this pattern-matching into a term rewriting system, the resultant TRS is:

is_zero(Z) → true (zero)

is_zero(n) → false (all_nat)

Fig. 7. TRS corresponding to the naive transformation of the function is_zero

However, in the TRS of the Figure 7, the term is_zero(Z) can be either rewritten in

– true, by application of the rule (zero)
– false, by application of the rule (all_nat)

Thus, we want to transform the pattern-matching into a term rewriting system in which each term has a
unique applicable rule. Using the same pattern-matching definition of is_zero, the term rewriting system
we want to generate is the following:

is_zero Z → true (zero)

is_zero (S n) → false (succ)

Fig. 8. TRS corresponding to a non-ambiguous transformation of the function is_zero

With the new TRS of the Figure 8, it exists only one valid rule to rewrite the term is_zero(Z), the
rule (zero).

To transform the naive TRS into a disambiguated TRS, we studied two different methods that we com-
pare in the next section.

4.2 Comparison

The two studied method are:

1. Pattern Minimization Over Recursive Data Types, proposed by Krauss [Kra08]
2. Generic Encoding of Constructor Rewriting Systems, proposed by Cirstea and Moreau [CM19]

These two methods tackles the problem with a different approach. With the aim of highlighting the
differences between the approaches, we first explain the concepts of the transformation for both methods.
Then, we perform the calculation. Finally, we explain which method we selected for implementation, and
why.

Overviews



The first method is proposed by Krauss in [Kra08]. The algorithm works only on a set of patterns we
want to disambiguate. The input of the algorithm is the set of the left-hand side of the rewriting rules. The
first step consists of computing a set of patterns called minterms. The set of minterms is a set of patterns
which partitionates the set of all reachable terms w.r.t the initial set of patterns. According to this procedure,
minterms do not overlaps. Actually, minterms solve the disambiguation problem, but the computed set can
be very large. Thus, there is a second step to minimize this set. The second step consists of generalizing
minterms as much as possible while preserving the partition of the initial set of patterns.This set is called
the essential prime implicants.

The second method is proposed by Cirstea,Moreau in [CM19]. It consists of a transformation of a list of
rewriting rules, with priority order, into a set of rewriting rules, without priority order. For this purpose,
the list of rewriting rules, using normal patterns, is transformed into a set of rewriting rules, using ex-
tended patterns. Extended patterns include addition of patterns and complement of patterns. We need to
introduces pure pattern, which are patterns with only variables, constructor patterns and additions. The
method consists of a transformation of complementary patterns into a pure pattern, thanks to a dedicated
TRS.

Calculation To compare the methods, we will do the calculations for the previous example is_zero. For the
sake of clarity, detailed calculations are available in appendix.

Krauss

Example 6. We follow the algorithm presented by Krauss ([Kra08] Section 4.4).

1. Since the method works with patterns, we keep only the left-hand side of the rules, which are is_zero(Z)
and is_zero(n). Because is_zero is the function, this is a common head term for each pattern. Hence,
we can consider that the set of pattern to disambiguate is {Z, ∗}.

2. Compute positive and negative minterms:
M+
P = {Z, S(∗)} and M−P = {}.

M+
P represents a disambiguate partition of ground terms with the same semantic of the given input.

M−P represents a disambiguate partition of ground terms which not matches with a pattern of the given
input. 1 For this particular example, the set of positive minterms is already minimal. But, in general, the
generated set is huge and we need to minimize it.

3. Compute the set of the essential prime implicants, which is E = {Z}.
4. The third step consists of computing the prime implicants and finding a covering of M with them. This

set is N ′ = {S(∗)}.
5. Finally, the output of the algorithm is E ∪N ′ = {Z, S(∗)}.

The details of the calculations are available in appendix A.

We may notice that only the left-hand side is treated with this method. Therefore, the right-hand side
is not treated. In particular, modifying variables in the left-hand side is needed to find the correct substi-
tution for the right-hand side. In this example, the original rule is_zero(n) → false may be transform into
is_zero(S(n1)) → false. Thus, we need to find the substitution σ such that σ(n) = S(n1), where n1 is a
fresh variable.

Cirstea,Moreau

Example 7. We follow the algorithm presented by Cirstea,Moreau ([CM19] Section 5.3).

1. We have the following list of rewriting rules with priority L = [Z → true, x → false]. We transform
this list into a set of extended rules without priority: {Z → true, x \ Z → false} where x \ Z denotes
the pattern which recognizes all terms except Z.

1 In practice, since the pattern-matching is complete, the set of negative minterms is always void.



2. Thanks to a specific TRS, we compute the normal form of the left-hand side for each rule. So that, we
have I<(L) = {Z → true, x@S(z1) → false}. This is a set of pure pattern. They are disambiguate
rules, but it remains aliased pattern.

3. Finally, we remove the aliased pattern and get the output of the algorithm:

{Z → true, S(z1)→ false}

This final step manages the substitution of variables.

A more detailled calculation is available in appendix B.

We may notice that the method manages the left-hand side and the right-hand side of the rewriting
rules.

Outcome Now we have seen example about the two methods, we can compare them.
Some crucial steps of Krauss’ algorithm (pattern minimization) are based on the complex Quine-McCluskey

algorithm. As a result, Krauss’ algorithm technique is not intuitive and seems difficult to implement effi-
ciently. On the contrary, the second method uses TRS to transform extended patterns into additive patterns.
Each step is very intuitive.

Moreover, where Krauss’ algorithm focuses only on the left-hand side, Cirstea,Moreau transforms a list
of left and right-hand sides of rewriting rules (with priority order) into a disambiguate and minimal set of
patterns (without priority order). The latter technique also handles right-hand sides and we do not have to
add a new step to substitute variables. Furthermore, after implementation and handmade verification, we
found an example which doesn’t work with Krauss’ algorithm (appendix C).

Thus, we decided to implement Cirstea,Moreau. We give more details on this method.

4.3 Generic Encoding of Constructor Rewriting Systems

Definitions and notations Firstly, we need to give some important notations and definitions.

Definition 2. Considers C a set of constructor symbols and X a set of variable symbols.

– a constructor pattern p ∈ T (C,X ) is a linear term, a term where every variable occurs at most one time.
– a value v ∈ T (C) is a ground term, a term without any variable

Extended patterns An extended pattern p is defined as follow:

p := X | f(p1, . . . , pn) | p1 + p2 | p1 \ p2 | q@p | ⊥

with f ∈ C, q ∈ T (C,X ).
We call p = p1 \ p2 a complement pattern. We call p = p1 + p2 an addition pattern. We call p = p1@p2 an

aliased pattern. We call p an additive pattern, an extended pattern, which contains no \. We call p a pure
pattern, an extended pattern, which contains no ⊥.

Definition 3. We define the ground semantic of patterns as follows:

– JpK = {σ(p) | σ(p) ∈ T (C)}, p ∈ T (C,X )
– JxK = T (C), x ∈ X
– Jp1 + p2K = Jp1K ∪ Jp2K
– Jp1 \ p2K = Jp1K \ Jp2K
– Jq@pK = JqK ∩ JpK, q ∈ T (C,X )
– J⊥K = ∅

Notice that, in practice, q ∈ X . Thus, Jq@pK = JpK



Definition 4. Given a list of pattern P = [p1, . . . , pn], we defined the disambiguation problem as finding sets of
patterns P1, . . . , Pn such that, for each i ∈ [1, . . . , n], JP K =

⋃n
i=1JpiK \ ∪

i−1
j=1JpjK.

In other words, for each pattern of the list, we want to find a pattern which recognizes the same terms
without terms from the previous patterns of the list. As a consequence, a list of equations can be replaced
by a semantically equivalent set of patterns, without priority order.

Definition 5. Let p be a constructor pattern and v a value. We can define the instance relation between extended
patterns, noted p � q, if it exists a substitution σ such that q = σ(p). We say that “q matches with p”. Since p is
linear, we can inductively define the instance relation as following:

x � v, x ∈ X
c(p1, . . . , pn) � c(v1, . . . , vn), iff ∧ni=1 pi � vi, c ∈ C

Algorithm

Intuition Let L be an ordered list of rewriting rules. To transform L into an unordered set of rewriting rules,
we apply the following transformation:

I = I@ ◦ I<

where

– I< encodes the priority order and return pure additive patterns, possibly with aliases
– I@ removes alias from pure additive patterns

In fact, we can decompose I< in 2 steps:

1. For each rule pi → qi of the list L, the left-hand side pi is transformed into an extended pattern
pi \ (p1+ · · ·+pi−1). So that, if a term matches with p1, . . . , pi−1, this term do not matches with pi \ (p1+
· · · + pi−1). This step transforms the list of normal rewriting rules (with priority) into a set of extended
rewriting rules (without priority).

2. For each left-hand side, the new extended pattern is transformed into a pure additive pattern, which is
the normal form w.r.t the TRSR@ (defined in Cirstea,Moreau [CM19]).
Finally, if pi \(p1+ · · ·+pi−1) ↓ R@ t1+ · · ·+ tn (ie. the normal form of pi \(p1+ · · ·+pi−1)), the rewriting
rule pi → qi is transformed into the following rules t1 → qi, . . . , tm → qi.

It is important to notice that each rule of R@ preserves the ground semantic of the pattern.

Focus on some rules The full TRS R@ is available in [CM19], Figure 3. Nevertheless, we can focus on some
rules and explain them.

The first rule we can focus on is

V \ g(t1, . . . , tn)⇒ V@(
∑
c∈C

c(z1, . . . , zm) \ g(t1, . . . , tn)) (M4’)

where V is a pattern variable, g is a constructor symbol, ti are pure additive patterns,m = arity(c) and zi are
fresh variables. This is the rule which complements a constructor pattern from a variable. Since the semantic
of a variable is the set of all ground constructor patterns, it is possible to obtain the set with the union of
all constructors, which is represented as the sum of theses patterns. The alias guarantees that the variables
of a complement pattern are not lost in the transformation (and keep the trace of the transformation for the
substitution step I@).

The second rule we can focus on is

g(v1, . . . , vn) \ g(t1, . . . , tn)⇒ g(v1 \ t1, . . . , vn) + · · ·+ g(v1, . . . , vn \ tn) (M7)

where vi is an additive pattern. This is the rule which complements two patterns with the same constructor
pattern in head. It corresponds to the set difference of cartesian products. The other rules are more intuitive.
Thus, we can see some optimizations of this TRS, which are really important.



Optimizations They are two majors optimizations for this TRS. However, before explaining them, we need
to define a new concept.

Definition 6. We say that a pattern p is subsumed by a set of patterns
P = {p1, . . . , pn} if p \ (p1 + . . .+ pn) ↓ R\ = ⊥.

The optimizations are the following:

– Cut Useless Choices: for the rule (M7), f(v1, . . . , vn) \ f(t1, . . . , tn), if it exists k such as vk \ tk = vk,
then, we know that the term f(v1, . . . , vn) subsumes all the other. Thus, we can reduce the rule to this
term.

– Sort Encoding: for the rule (M4’), the rule may produce ill-formed terms. It is then possible to filter
them and only keep well-formed terms.

Our results shows that theses optimizations are essentials. Without them, the normalization produced a
very large set of rules. This huge set cannot be handled by the minimization step in reasonable time, which
is the last step.

Minimization The idea of the minimization algorithm of a set of pattern P is the following. For each pattern
of P :

– If the pattern is not subsumed by all the others, we need to keep it. The pattern is absolutely essential.
– If the pattern is subsumed by all the others, then we iterate the algorithm on the other pattern of P ,

with and without this pattern. We keep the set with minimal number of patterns.

4.4 Implementation

I implemented a prototype for both method:

– Krauss method: ~ 800 lines of OCaml code
– Cirstea,Moreau method: ~ 1000 lines of OCaml code

Moreover, the implementation into the interpreter needed some modifications: find the right place to inte-
grate the disambiguation algorithm into the existing code, attach type information with constructor terms
and compile normal patterns into extended patterns. It represents ~ 200 lines of code.

We tested the implementation with the same examples used in [Kra08] and [CM19] and had the same
results for the number of patterns generated by the disambiguation:

– Interp produced 25 rules.
– Red Black Tree Balance produced 91 rules.
– Numadd produced 256 rules.

5 Conclusion

This project was a great opportunity to introduce the domain of the formal verification. I discovered the
formalism of term rewriting system and learned about pattern-matching. Moreover, I could implement the
disambiguation algorithm into the interpreter. Even if some features have not been implemented in this
project, this is a big step toward a demo tool for Timbuk4 on VerySimpleOCaml.
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A Full calculation steps for Krauss

A.1 Minterms

We have the following set of patterns: P = {Z, ∗}.

MT (P ) = {Z} ∪ {S(MT (
∏
S,1

(P )))}

The second set is computed thanks to: ∏
S,1

(P ) = {∗}

MT ({∗}) = {∗}

So that, we have:
MT (P ) = {Z, S(∗)}

Finally, we can partition MT (P ) as M+
P = {Z, S(∗)} and M−P = {}.

A.2 Prime implicants

For all m,m′ ∈M+
P , compute dsup(m,m′)e.

dsup(Z,Z)e = Z

dsup(S(∗), S(∗))e = S(∗)

dsup(Z, S(∗))e = ∗

We can filter them to keep only implicants. Then, we have N = {Z, S(∗)}

A.3 Essential prime implicants

For all m ∈M+
P , compute RM+

P
(m).
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Firstly,

RM+
P
(Z) = sup{g ∈ G(Z) |[ g] ⊆ [M+

P ]}.

G(Z) = {∗, Z}

Since [∗] ( [M+
P ],

RM+
P
(Z) = sup{Z} = Z

Secondly,

RM+
P
(S(∗)) = sup{g ∈ G(S(∗)) |[ g] ⊆ [M+

P ]}.

G(S(∗)) = {∗, S(G(∗))}

But, G(∗) = {}. So that, G(S(∗)) = {∗}. Since [∗] * [M+
P ], there is no RM+

P
(S(∗)).

Finally, we can conclude that E = {Z}.

A.4 Conclusion

Finally, we easily compute M = {S(∗)} and N ′ = {S(∗)}. The disambiguate and minimized set of pattern
is the following: E ∪N ′ = {Z, S(∗)}.

B Full calculation steps for Cirstea,Moreau

Let’s compute x \ Z ↓ R@
\ .

By the rule (M4’)→ x@(Z \ Z + S(z1) \ Z)
By the rule (S2) → x@(Z \ Z) + x@(S(z1) \ Z)
By the rule (M7) → x@⊥+ x@(S(z1) \ Z)
By the rule (M8) → x@⊥+ x@S(z1)
By the rule (E2) → ⊥+ x@S(z1)
By the rule (A1) → x@S(z1)

Finally, we have x \ Z ↓ R@
\ = x@S(z1).

C Wrong calculation for Krauss

For the example, we want to disambiguate P = {〈Suc(0), ∗〉, 〈∗, 0〉}.



C.1 Minterms

Let’s compute the minterms of P .

MT (P ) = 〈MT (
∏
〈〉,1

(P )), MT (
∏
〈〉,2

(P ))〉

∏
〈〉,2

(P ) = {∗, 0}

MT ({∗, 0}) = {0, Suc(∗)}∏
〈〉,1

(P ) = {Suc(0), ∗}

MT ({Suc(0), ∗}) = {0} ∪ Suc(MT (
∏

Succ,1

({Suc(0), ∗})))

MT ({Suc(0), ∗}) = {0} ∪ Suc(MT ({0, ∗}))
MT ({Suc(0), ∗}) = {0} ∪ Suc({0, Suc(∗)})
MT ({Suc(0), ∗}) = {0, Suc(0), Suc(Suc(∗))}
MT (P ) = {〈0, 0〉, 〈0, Suc(∗)〉, 〈Suc(0), 0〉, 〈Suc(0), Suc(∗)〉, 〈Suc(Suc(∗)), 0〉, 〈Suc(Suc(∗)), Suc(∗)〉}

We can partition MT (P ) as

– M+ = {〈0, 0〉, 〈Suc(0), 0〉, 〈Suc(0), Suc(∗)〉, 〈Suc(Suc(∗)), 0〉}
– M− = {〈0, Suc(∗)〉, 〈Suc(Suc(∗)), Suc(∗)〉}

C.2 Prime implicants

Let’s compute the prime implicants For all m,m′ ∈M+
P , compute dsup(m,m′)e.

M+
P = {〈0, 0〉, 〈Suc(0), 0〉, 〈Suc(0), Suc(∗)〉, 〈Suc(Suc(∗)), 0〉}, we obtain:

– 〈0, 0〉
– 〈∗, 0〉
– 〈∗, ∗〉
– 〈Suc(0), 0〉
– 〈Suc(0), ∗〉
– 〈Suc(∗), 0〉
– 〈Suc(0), Suc(∗)〉
– 〈Suc(∗), ∗〉
– 〈Suc(Suc(∗)), 0〉

Next, we filter them to keep those which are implicants, that is ∀p ∈ M−P . p ∧ dsup(m,m′)e = ⊥, and those
which are not instances of other patterns of the set. Thus, prime implicants are N = {〈∗, 0〉, 〈Suc(∗), ∗〉}

C.3 Essential prime implicants

Let’s compute the set of essential prime implicants. For each positive minterms m ∈ M+
P , we compute its

neighbourhood term RP (m). We recall that

– P = {〈Suc(0), ∗〉, 〈∗, 0〉}
– M+

P = {〈0, 0〉, 〈Suc(0), 0〉, 〈Suc(0), Suc(∗)〉, 〈Suc(Suc(∗)), 0〉}

1. m = 〈0, 0〉



– Generalisation G(m) = {∗, 〈∗, 0〉, 〈0, ∗〉}
– Filtering {g ∈ G(m) | [g] ⊆ [P ]} = {〈∗, 0〉}
– Sup RP (m) = 〈∗, 0〉

2. m = 〈Suc(0), 0〉
– Generalisation G(m) = {∗, 〈∗, 0〉, 〈Suc(∗), 0〉, 〈Suc(0), ∗〉}
– Filtering {g ∈ G(m) | [g] ⊆ [P ]} = {〈∗, 0〉, 〈Suc(∗), 0〉, 〈Suc(0), ∗〉}
– Sup RP (m) = 〈∗, ∗〉

3. m = 〈Suc(0), Suc(∗)〉
– Generalisation G(m) = {∗, 〈∗, Suc(∗)〉, 〈Suc(∗), Suc(∗)〉, 〈Suc(0), ∗〉}
– Filtering {g ∈ G(m) | [g] ⊆ [P ]} = {〈Suc(0), ∗〉}
– Sup RP (m) = 〈Suc(0), ∗〉

4. m = 〈Suc(Suc(∗)), 0〉
– Generalisation G(m) = {∗, 〈∗, 0〉, 〈Suc(∗), 0〉, 〈Suc(Suc(∗)), ∗〉}
– Filtering {g ∈ G(m) | [g] ⊆ [P ]} = {〈∗, 0〉, 〈Suc(∗), 0〉}
– Sup RP (m) = 〈∗, 0〉

After filtering the RP (m) which are not implicants, set of essentials prime implicants is the following :
E = {〈∗, 0〉, 〈Suc(0), ∗〉}

C.4 Conclusion

Finally, E ∪ N ′ = {〈∗, 0〉, 〈Suc(0), ∗〉} This is the initial set of patterns P , which is ambiguous because
〈Suc(0), 0〉 is an instance of both 〈∗, 0〉 and 〈Suc(0), ∗〉.
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