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Abstract

Vellvm is a formalization in the Coq proof assistant of the LLVM IR. As such, it is used to prove
correct compilation passes, front-ends in particular. While reasoning semantically about generated
code is a complex task per se, a significant overhead is entailed simply to ensure that the produced
code is well-formed. In particular, LLVM IR requires that the labels of the blocks of code constituting
the CFG be unique. To simplify the code generation in Vellvm and optimizations on the control-
flow graph, we present a design-specific language, CFLang, which ensures by construction the well-
formedness of the generated graph. To guarantee the usability of these combinators in the context
of verified compilation performed by equational reasoning — as is done in Vellvm —, we provide
for each combinator their characteristic semantic equation. Finally, we illustrate the usability of our
DSL by writing a compiler from IMP to VIR and validate the well-formedness of the generated code
as well as its correctness.
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1 Introduction

Context In 2003, the compiler framework LLVM [1] is published. Nowadays, the LLVM framework
is very successful and widely used, which can be explained by its modularity. The LLVM framework
has been designed to make analysis and transformation for arbitrary source-languages. Indeed, the core
of the compilation chain is its intermediate representation, LLVM IR, on which many static analysis
and optimizations passes are performed. This genericity led to the creation of many frontend targeting
LLVM IR, and the code can be turned into hardware-specific assembly language by the various backends.
These characteristics make LLVM an interesting compilation framework. As a consequence, LLVM is
widely used in the industry — a bug in the compilation chain is even more serious. This makes the
LLVM framework a good candidate to formalize it.

In 2009, CompCert [2] came out as a breakthrough in the domain of certified compilation, proving
that it is possible to formally certify real-world languages — C99 in this case. CompCert needed decades
of research to emerge. It is very specific, and a such project to write a verified compiler for another
real-world language would also need a hugh effort. Most of the projects aspiring to define the formal
semantic of such languages relied on the operational semantic. The operational semantics are intuitive
and expressive, and they well support the inductive principles of the theorem prover ; but they have
significant drawbacks. Firstly, they are not compositional — a compositional semantic can be defined
only with the syntax of the language, without adding syntactic constructs such as a program counter.
Secondly, they are not modular — adding new effects in the semantic require a huge effort, particularly
with the correctness theorem of the compiler. Finally, they are not executable — in a proof assistant such
as Coq, theses semantics are defined relationally and a reference interpreter is developed simultaneously.
A proof of correctness of the interpreter is needed. For a language with many effects and evolutive as
LLVM IR, the operational semantics is not easily maintainable for an evolutive language such as LLVM
IR.

In 2019, Xia et al. introduced a co-inductive data structures, the Interactions Trees [3], and built a
library around it providing a set of tools easing the design of denotation semantic for arbitrary effectful
(and potentially divergent) languages. The resulting semantics typically enjoys modularity, composi-
tionality and executability. Moreover, the structure ships with relations capturing notions of behavioral
equivalence and behavioral refinements, allowing one to reason equationally about these properties,
and in particular hiding from the user the need for explicit co-inductive arguments to establish such
termination-sensitive results.

In 2021, the project Vellvm [4] aims to define a formal semantics for LLVM IR in Coq. It introduced a
new semantic for VIR (Verified IR), a realistic subset of LLVM IR (including undefined behaviors), using
the interactions trees. The adequacy of the semantics is validated through differential testing against
clang, while its usefulness has been stressed through the proof of elementary optimizations, and most
importantly the proof of correctness of a front-end for HELIX [5] targeting VIR.

Problem The ITrees allow to define modular, compositional and executable semantics. These three
characteristics are essentials in the development and upkeep of a semantic for a large-scale language
such as VIR. The combination of their support for equational reasoning with the compositionality of
the resulting semantics allows for a satisfyingly algebraic proof-method to establish the correctness of
program transformations. But aside from these elegant considerations looms some much nastier, menial
issues. LLVM IR is a named language based of control-flow graphs: ensuring that the manipulated
graphs and sub-graphs are well-formed is crucial to conduct any semantic reasoning about the language.
Naturally, these well-formedness properties, such as the uniqueness of the labels in a graph, are often
intrinsically global, and thus intrinsically anti-compositional.

For the programmer who writes a frontend targeting VIR, ensuring a clean generation of fresh names
to ensure that the generated code is well-formed is a fairly minor annoyance. For the proof engineer
who intends to prove correct this front-end however, it is a huge thorn in their foot. For instance, in
HELIX [5], a simple freshness monad is used to generate fresh names during the compilation. In the
absence of any further structure, more than 2k LoC of specification and proofs have been necessary to
prove that the generated graphs are indeed always well-formed — essentially reasoning about the non-
intersection of intervals of seeds used to generate names, hence ruling out conflicts. While such reasoning
is at some level unavoidable, it is here conducted very specifically for this compiler, and would have to
be essentially restarted from scratch when considering another program transformation.
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Goal & Proposal Our goal is to discharge the frontend programmer of the generation of the labels,
and therefore its proof of correctness. We want to abstract the label generation in an intermediate
representation between the frontend and VIR, such as the user does not manipulate labels.

To tackle this goal, we have designed a set of combinators to compositionally create new control-flow
graph. They link arbitrary well-formed control-flow graphs (pieces of VIR syntax) together. Moreover,
we prove sufficient conditions ensuring that the combinators produce well-formed graphs. On top of these
unsafe combinators, we build a design-specific language (DSL) living in a freshness monad and taking
care of generating appropriate names. The DSL ensures the sufficient conditions to use the combinators.
Thus, we can be sure that the code generated by the DSL is well-formed by construction.

Contributions Our contribution are the following:

• We design a set of high-level combinators of arbitrary open control-flow graph (OCFG);

• We develop a meta-theory of freshness monad which generates fresh label names;

• We design a domain-specific language, named CFLang, aiming at filling the gap between the label
generation with the freshness monad and the unsafe combinators of OCFG;

• We provide an equational theory for CFLang, allowing the user to use an algebraic proof-method

• We perform a case study over a compiler from IMP to VIR, using CFLang as intermediate repre-
sentation to generate the labels (ongoing work).

The remaining of this report is organized as follows. First, we introduce the necessary background on
Interaction Trees and Vellvm in Section 2. In Section 3, we present our set of combinators on arbitrary
control-flow graph and the DSL CFLang. In Section 4 we describe the compiler from IMP to VIR. Finally,
the related work and the conclusions are covered in Section 5 and Section 6.

2 Background

2.1 Interaction Trees

Definition Interactions trees [3] (ITrees) are a co-inductive data-structure. A value of this structure,
a tree, represents the dynamic behaviors of a computation; the datatype is expressive enough to model
recursive and effectful programs, including divergent computations. Formally, the type itree E R is
defined in Fig. 1, where E : Type → Type is a set of events and R: Type is the return type of the ITree.
As shown, the ITrees are built using three constructors: (1) Ret, represents the trivial computation,
halting and returning a pure value of type R, (2) Tau is a silent step, representing an internal computation
followed by the rest of the computation t, and (3) Vis e k is a visible event. e is an external interaction,
returning a value of type A (the answer), and k is a continuation, ie. k : A → itree E R, such that k can
behave differently for different values of the response to the event. Interestingly, we may notice that the
type itree E is a variant of the free monad [6], parameterized by a E. The bind operation enables the
sequence of computations. Moreover, it is iterative, meaning that they can encode loops and recursion
with the operators iter and mrec.

Example Let us consider the external event type of IO, representing simple interactions of read and
write natural numbers. The corresponding datatype of interaction — the E fed to the type of compu-
tations — is defined in Fig. 2a. The ITree defined in Fig. 2b represents a divergent computation that
infinitely reads a natural number, and writes it in the environment.

CoInductive itree (E : Type → Type) (R : Type) : Type :=
| RetF (r : R)
| TauF (t : itree E R)
| VisF {A : Type} (e : E A) (k : A → itree E R).

Figure 1: Coq definition of the datatype ITree
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Definition IO : Type → Type :=
| Read : IO nat
| Write : nat → IO unit.

(a) Definition of the Event IO

CoFixpoint echo : itree IO void :=
Vis Read (fun x ⇒ Vis (Write x)

(fun _ ⇒ echo)).

(b) ITree representing the computation echo

Figure 2: Simple example of ITree – Echo with IO

Equivalence In order to compare ITrees, the library provides two relations, encoding two notions of
bisimulations over the computations. The first one is the strong bisimulation, written t1 ∼= t2: it relates
two ITrees with the exact same shape. The second one is the weak bisimulation, written t1 ≈ t2: it
relates two ITrees returning the exact same value, emitting the exact same visible events, but potentially
disagreeing on the amount of fuel, i.e. the number of tau-nodes, required to run these computations.
This relation is also called “equivalent up-to-tau”. Thus, and contrary to the strong bisimulation, the
weak bisimulation typically respects equations such as Tau t ≈ t.

Additionally to behavioral equivalence, both strong and weak bisimulations can be used to express
(heterogeneous) refinements of programs: they are parameterized by a relation R : A → B → Prop,
where A and B are the return types of the computations being compared, such that t1 : itree E A and
t2 : itree E B are related by t1 ≈R t2 with Ret a ≈R Ret b ⇔ R a b.

Modular and compositional semantic The Interaction Trees are modular, in the sense that we can
easily add or remove effects to the semantic. Indeed, the effects of a computation encoded by an ITree is
visible thanks to the constructor Vis. The constructor Vis can be understand like uninterpreted events.
To define semantics to events, we define an event handler. The interpretation of an ITree consists on
folding the event handler all over the ITree. It should commute with monadic structure. In other words,
an event handler is good if we can reason on the ITree before interpretation.

Additionally, the Interaction Trees can be combined compositionally thanks to functions called “com-
binators”. An important combinator is iter: (A → itree E (A+B)) → (A → itree E B) encoding the it-
erations and hiding the co-induction to the user. Given a starting state a : A, the combinator iter either
iterates again a body body : A → itree E A+B with a silent step (producing a Tau), or stops the com-
putation. Moreover, the ITrees also provides other combinators such as mrec to encode mutual-recursive
combinators.

Operational VS Denotational Semantics On the one hand, the usual proof methods for the opera-
tional semantics are based on simulation diagram. These semantics are usually defined with a small-step
semantic with a predicate step : config → config → Prop where step c1 c2 is the transition from a con-
figuration c1 to configuration c2. We may notice the transition is not typically expressed as a function
that computes c2 from c1. The method of simulation diagram is represented in Fig. 3. The black part is
the hypotheses and the blue part is the conclusions. Let R be the equivalence relation between a state
for the source language Si and a state for the target language Si′. For each step from S1 to S2 in the
semantics of the source program that emits the observable effect labeled by t, should correspond one or
many steps from S1′ equivalent with S1, and emitting the same observable labeled by t. S1 represent
the state in the execution of a program from the source language and S1′ its equivalent state from the
target language.

t

+

S1'
R

t

S1

R
S2 S2'

Figure 3: Simulation Diagram
.

On the other hand, the denotational semantic of the ITrees is based on an algebraic proof-method
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exp ::= . . . instr ::= . . .

id , bid ::= string

term ::= branch (exp, bid , bid) | return (exp) | . . .

phi ::= Φ (list (bid , exp))

block ::= {entry : bid ; phis : list (id , phi); code : list (id , instr); term : term}
cfg ::= {name : id ; args : list bid ; entry : id ; body : list block}

mcfg ::= mrec (cfg , . . . , cfg)

Figure 4: An excerpt of VIR’s syntax

with equational rewriting. The theory provides a bunch of equations that can be used to prove the
relation of bisimulation. In particular, the equations hide the coinductive reasoning from the user. They
can therefore treat the definition of the weak bisimulation as a black box: they only have to reason
purely equationally. In practice, the simulation diagram required to conduct the algebraic reasoning is
simpler than the one necessary in the operational approach due to the compositionality of the semantics:
notions such as program counters and syntactic contexts are lifted away.

However, it is possible to use the semantic equations by rewriting them (eg. in a context C, to
replace C[t1] with C[t2] if we have t1 ≈ t2) only if the context is proper, meaning that it respects the
equivalence. Both strong and weak bisimulation have been proven to be congruent for all the combinators
on the ITrees (bind, iter, . . . ), and the library provides the necessary instances to perform the rewrites.
In brief, if the ITrees are defined with the combinators only, we can safely rewrite the equations.

2.2 Vellvm

Vellvm [4] is a project aiming at defining formally the semantic of the LLVM IR and building verified
components upon it.

LLVM IR The LLVM IR is a low level code representation close to an abstract RISC-like instruction
set, with high-level information. It has been designed to be low-level enough to represent any arbitrary
program, with enough high-level information to permit extensive analysis and optimizations. The LLVM
IR is language based on control-flow graphs, using named labels and registers. The virtual registers are
in Static Single Assignment (SSA) form [7]: graphs guarantee that any register always has a unique
definition site, and that this definition site dominates all its use sites. This invariant has proved to be
invaluable for efficient and scalable static analyses and optimizations. The language is statically typed,
with primitive types (boolean, integer, floating point and pointer) and structured types — although the
type system is quite weak, essentially used to infer statically the size of the manipulated data.

Finally, the low-level memory model provides casts between pointers and integers.
VIR (Verified LLVM IR) is a realistic subset of the LLVM IR. Fig. 4 shows an excerpt of the syntax

of VIR1.

Semantic The semantic of VIR is ITree-based, meaning that each piece of syntax is represented by
an ITree: this itree is a potentially infinite unfolding of the dynamics of the program, where all effects
other than the control flow are still represented as syntactic (i.e. uninterpreted) events in the tree. This
semantics captures non-trivial features of the language — pointers, LLVM’s phi-nodes, poison values or
undefined behavior.

These representations are defined recursively on the syntax of the programs, each syntactic sub-
component admitting its own representation. In particular, proper compositionality at the graph-level is
ensured by defining the semantics of a complete CFG as a fixed-point of the function associating to each
block identifier its representation. Because each component admits a well defined meaning in isolation,
we can prove compositonal semantic equations — up-to weak bisimulation typically — characterizing
their behavior in terms of the semantics of their syntactic sub-components. Vellvm provides a full set of
such equations, allowing for reasoning through rewriting about the semantics of VIR programs.

1For this work, we are only concerned with the control-flow: we therefore focus mainly on the block and cfg parts of
the datatype.
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Figure 5: Levels of interpretations
.

Effects and interpretation Finally, Vellvm introduces a semantic for the effects with an interpreter.
In fact, there is a stack of interpret introducing gradually the semantic of the effects. Each level of
interpretation makes the state monad more complex. This tower of interpretation allows to reason
about the semantic with the simplest monad necessary: typically, one can pretend the semantics to be
deterministic if no undefined values are involved.

Fig. 5 presents the stack of interpretation of the effects. We may notice that the two last levels
separates the propositional model and the executable interpreter. In fact, the model accounts for the
non-determinism of VIR (such as the undefined behaviors) by interpreting them propositionally. They
are suitable for specification, but not for extraction. The executable interpreter on the other hand is
proved to implement one of the allowed behavior as specified by the model.

3 Combinators and CFLang

3.1 Motivation

Weak bisimulation is proved to be a congruence for the itree-combinators, the fixpoint operator iter in
particular. These combinators ship with a set of semantic equations characterizing their meaning. These
itree-level combinators are then used to represent the syntax of a language, for example IMP or VIR.
Hence, we can increase our level of reasoning abstraction by lifting these equations through new semantic
equations at the syntax-level. For instance, let c1 and c2 be two pieces of code (eg. IMP code) and let
c1; ; c2 be the sequence of c1 and c2. If we write JcKIMP the denotation of c, which is an ITree, then
the equation of the sequence goes as follows: Jc1; ; c2KIMP ≈ Jc1KIMP ; Jc2KIMP , where t1; t2 is a notation
for bind t1 (fun _ ⇒ t2). Simply put, this equation proves that the meaning of the sequence of two
programs is indeed the sequence of their respective meanings. Thanks to this compositionality, a program
transformation between two languages whose semantics is defined in this style can be proved directly
by induction on the syntax of the source language. Each syntactic sub-component is proved correct
by a combination of symbolic rewriting and Hoare-style relational reasoning. Simulation diagrams are
therefore never made explicit, we only need to reason about the local invariant relating the memory state
at each syntactic program points.

However, VIR is a CFG-based language: it therefore does not explicitly contains any construction for
high-level control-flow mechanisms such as sequencing or iterating. Compiling a source language down
to VIR, such as is done for HELIX for instance, therefore currently requires to manually encode these
constructions. Furthermore, because VIR is named, there are many opportunities to break fundamental
well-formedness conditions: typically, two blocks could be named identically, resulting on one of them
being shadowed by the other.

Unfortunately, this kind of well-formedness properties is global, and is therefore intrinsically anti-
compositional. An ad-hoc solution is to use a non-controlled freshness monad to generates the label
names in the compiler: intuitively, the compiler is passed by argument a seed used to generate fresh

6



names. The operations on the monad are written such that each generation of a fresh label increments
the seed, ensuring that it will never produce a duplicate label. This solution was notably adopted in
HELIX. However, although the freshness monad is a convenient tool, nothing constraints the compiler to
only generate names through the operations provided by the monad: it could craft a name at any-point,
or inadequately pass the state monad by argument during a recursive call. In practice, proving that the
graphs generated by the HELIX compiler are well-formed turn out to represent a significant amount of
tedious work. Furthermore, this reasoning about interval arithmetic and naming ends up cluttering the
semantic arguments of correctness of the compiler.

Although more well-formedness conditions could be of value, through this internship, we have specif-
ically focused our attention onto the uniqueness of labels condition. Formally, the uniqueness of the

Definition wf_cfg_bid (c : cfg) : Prop :=
list_norepet (map entry c).

Figure 6: Coq Property of the Uniqueness of Labels

labels, defined in Fig. 6, gathers all the block labels of the cfg in a list, and ensures that there is no
duplicate.

In face of this observation, our goal is to help the verified-compilation enthusiast in two ways: pro-
viding higher-level semantic abstractions by reflecting high-level control-flow constructs in VIR on one
hand; ensuring the well-formedness of generating graphs by construction on the other.

3.2 Approach

In order to lighten the proof burden of a verified frontend by discharging the proof of well-formedness of
the generated graphs, we propose to add abstraction layers between the potential frontend and VIR. In
a first step, we define a set of functions, called combinators, used to build control-flow graphs composi-
tionally. The combination preserves the well-formedness — at least regarding the unicity of the labels.
We characterize them semantically, but some preconditions are needed to use the equations. Indeed,
unlike an intrinsically typed representation, the combinators do not guarantees the well-formedness stat-
ically by the type system — they do not guarantee the well-formedness at all. We instead established
and proved the necessary conditions embedding the well-formedness, but we do not want let the user
discharge manually these conditions. In a second step, we provide a DSL, CFLang, interfacing the com-
binators and a freshness monad for the generation of the label names. This second layer of abstraction
generates well-formed fresh labels for the basic blocks that guarantee the preconditions needed to use
the equational theory of the combinators. The compilation of a CFLang program generates a well-formed
VIR code and a set a equations of denotation characterizes semantically a CFLang program.

To summarize, we provide a DSL of graph generation combinators that prevent the user to explicitly
craft the names of the labels used. We guarantee that as long as they only use our DSL to write their
program transformation, the resulting graphs will be well-formed by construction. Finally, we ship each
combinator with a proved semantic equation, allowing for an high-level, abstract reasoning about the
correctness of the resulting compiler.

3.3 Combinators

Overview As explained above, we design a set of combinators encoding usual high-level control-flow
operations, such as the sequence or the conditional branching, into operations on control flow graphs.
When designing such combinators in a dependently-typed language such as Gallina, there is tension
between the ease of defining the combinators themselves, and the ease of using these combinators: on
one extreme, the intrinsically typed approach ensures all properties by well-typedness, while an untyped
approach leads to necessary side conditions when using the combinators. In our work, we resolve this
tension in two steps: the combinators defined in this section are weakly typed, but we build in a second
step a sound interface to constrain their use on top of it, as described in the following section.

In particular, we observe that the combinators we present though this section manipulate directly the
syntax of VIR, and therefore named CFGs — as opposed to manipulating an anonymous representation.
The names of the new blocks introduced by a given combinators, or of the inputs and outputs linked,
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GRAPH1 GRAPH2

IN2

OUT1

(a) Combinator Sequence of two CFGs

.

IN_TRUE

IN_FALSE

GRAPH_TRUE

GRAPH_FALSE

INPUT

(b) Combinator Conditional Branch of two CFGs

.

OUT2

OUT1

GRAPH

OUTPUT

OUT1

OUT2

(c) Combinator Join Outputs of a CFG

.

OUTB

BODY

INB

OUTPUT

INPUT

INPUT
OUTB

Code Expr

(d) Combinator While of a CFG

.

Figure 7: Combinators

are therefore provided explicitly by argument. The combinators therefore cannot ensure properties such
as the uniqueness of label names, or the validity of their semantics, by construction: they are indeed not
statically typed. We however formulate through a set of lemmas the sufficient conditions under which
the combinators behave nicely: typically, one needs to ensure that the fresh label passed by argument to
create a new block is indeed fresh relative to the labels contained in the graphs passed by argument.

Finally, we stress another design choice: the combinators do not perform any renaming. When a
unification between an output label of a graph, and an input label of another one is need, we instead
create a fresh block with no code acting as a direct wire between them. This greatly simplifies the
construction and theory, and while the resulting graphs naturally are indebted with an execution cost,
we anticipate this to be easily resolved by a simple block fusion optimization such as the one already
existing — and proved correct — in Vellvm.

We present the following combinators:

• basic block : given a piece of straight code, the label of the block and the label of the next block,
creates a basic block with an unconditional branch to the next block

• conditional : given two graphs, the name of their respective input blocks, and a condition, either
jumps in the first graph if the condition is true, or jumps in the second one if the condition is false;

• join: given two outputs of a graph, makes them jump onto the same output;

• sequence: given two graphs g1 and g2, with out1 ∈ outputs(g1) and in2 ∈ inputs(g2), links them
such that if the flow leave g1 by out1, it jumps into the block in2;

• while loop: iterates a body described as a graph, given its input and output labels, while a condition
described as a straight code is true.

We represent on Fig. 7 four of these combinators. In each case, we depict in red the additional pieces
of syntax introduced by the combinator, while the black ones are sub-components taken as arguments.

For instance, Fig. 7a is a representation of the CFG generated by the sequence combinator:
cfg_seq GRAPH1 GRAPH2 OUT1 IN2. It links sequentially GRAPH1 to GRAPH2: intuitively, doing so should
simply consist in unifying the output of GRAPH1 with the input of GRAPH2, however this would require
to perform some renaming. Instead, the combinator takes as argument the labels representing the output
and input meant to be linked, and introduces an empty block labelled by the former and consisting of a
direct jump to the latter. Additional outputs of GRAPH1 (resp. inputs of GRAPH2) are treated in the
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resulting graph as outputs (resp. inputs). From this representation, we may notice some well-formedness
requirements:

• OUT1 needs to be free in G1 and G2 (there is no block already named OUT1);

• G1 and G2 must both be well-formed;

• The labels of G1 and the labels of G2 must be disjoint.

We will describe how we ensure these requirements are systematically met in Section 3.4.
As its name suggest, the while combinator iterates over a body while a boolean expression is verified.

To do so, the combinator creates a block computing the expression and doing the conditional branch. If
the condition is true, the flow jumps in the BODY by the block INB. Finally, the combinator creates an
empty block that links the output of the BODY with the INPUT block, which introduces the iteration.

The remaining combinators are pretty straightforward.
The operations we have described are purely syntactic manipulations, consuming and producing

graphs. In order to prove that they deserve their respective evocative names, we now turn to the proof
of the semantic equations we have established.

Semantics In order to characterize semantically the combinators, we provide characteristic semantic
equations for each combinator. As highlighted in the previous paragraph, our combinators are however
too weakly typed, they can be ran on nonsensical arguments. We therefore identify for each of them
the sufficient conditions for their correctness, and prove the semantic characterizations assuming these
constraints. Once again, we will ensure these constraints are satisfied by construction in a second time.

Although this technical detail is implicit in these equations, we emphasize that due to the modular
approach to building semantics using ITrees, we are able to establish these equations independently from
the implementation of any of the effects of the language. They are established as equivalences between
uninterpreted trees, and the Vellvm’s meta-theory ensures that these equations lift to the top-level notion
of refinement of programs.

Lemma denote_cfg_seq : ∀g1 g2 out1 in2 from to,

wf_seq g1 g2 out1 in2 →
In to (inputs g1) →

(denote_cfg (cfg_seq g1 g2 out1 in2) from to)
≈

(d � denote_cfg g1 from to ;;
match d with
| inr dv ⇒ ret (inr dv)
| inl (src, target) ⇒

if target =? out1
then denote_cfg g2 out1 in2
else denote_cfg g2 src target

end).

Figure 8: Denotation of the sequence

Fig. 8 describes the characteristic equation for the sequence combinator. This lemma should be read
as follows: assuming that the three well-formedness assumptions described in the previous paragraph
hold (predicate wf_seq), assuming that the block we start the evaluation from belongs to the first graph,
then the denotation of the graph built using the sequence combinator is precisely the sequence of the
denotation of the first graph followed by the one of the second graph. This latter sequence is slightly
more verbose than desired in the equation. At the end of the execution of the first graph, we need to
consider three options depending on the returned value. If the function has returned, we are done. If the
label jumped to is the one expected, we need rename it before feeding it to the second graph. Otherwise,
we simply pass it along to the second graph.

Fig. 9 describes the characteristic equation for the while combinator. The hypotheses has_post means
that if the flow enters in the body by the block inB, then the flow must exit body by jumping into outB.
In the equation, the evaluate_conditional denotes the code of the condition, raising an exception (VIR
event) if the expression is not a boolean. Moreover, the itree c ombinator iter do the iteration.
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Lemma denote_cfg_while_loop : ∀expr_code cond body input inB output outB from,

wf_while expr_code cond body input inB output outB →
(∀ bfrom, has_post (denote_cfg body bfrom inB) (fun vob ⇒ ∃bfrom, vob = inl (bfrom, outB)))

→

(denote_cfg (cfg_while_loop expr_code cond body input inB output outB) from input)
≈

(iter
(fun (_ : unit) ⇒

b � evaluate_conditional expr_code cond;;
if b : bool
then
vob � denote_cfg body input inB;;
match vob with
| inr v ⇒ Ret (inr (inr v))
| inl _ ⇒ Ret (inl tt)
end

else Ret (inr (inl (input,output)))) tt).

Figure 9: Denotation of the while

The proof of this semantic equation for the sequence essentially relies on the equations provided by
Vellvm and the Interaction Trees. We unfold the definition of the combinator on the left-hand side, and
proceed by symbolic execution of the VIR syntax. After enough rewriting, we match up a common prefix
on both side of the equation: the semantics of the first graph. The theory of eutt ensures that we can
match these prefixes and proceed with their continuations. At this stage, more symbolic execution on
the left hand side allow us to compute along the empty block introduced to jump to IN2, leading to two
computations that once again match exactly, allowing us to conclude.

Most other combinators follow a similar pattern: once the appropriate sufficient conditions are iden-
tified, the proof follows smoothly by equational reasoning.

The semantic characterization for the while combinator Fig. 9 however required another proof method.
Indeed, for the other combinators such as the sequence, the equations basically hide the empty blocks,
whereas the equation for the while is more abstract. Moreover, reasoning on an equation involving
the ITree combinator iter is much more complex than equation involving only bind. The equations of
Vellvm were not sufficient and we tackled the proof differently. We had to reason co-inductively on
the interactions trees, and to introduce intermediate lemmas relating interaction trees with the strong
bisimulation, breaking the abstraction eutt. It raises an interesting question for a future work: how can
we avoid to break the abstraction eutt and to spare totally the co-inductive proof for future theorems.

We are now able to combine arbitrary control-flow graphs, preserving the well-formedness properties
of the VIR code, and manipulate the semantic of the combinators with the equations. But, the user
still have to ensure annoying preconditions with the name generation. The next step is to provide an
interface between the combinators and the name generation.

3.4 CFLang

So far, the combinators provide a way to build compositionally arbitrary control-flow graphs, but they
are too lenient: they say nothing as to how the fresh names of the labels should be picked. As a
consequence, their use is quite impractical: if used to write a compiler such as the one for HELIX, they
would structure the proof of well-formedness of the resulting graphs, but would still require a lot of manual
work to discharge at each call the corresponding side conditions. In order to alleviate this problem, we
build a new DSL of control flow graphs, named CFLang. Programs in CFLang are essentially refined into
VIR graphs built using exclusively combinators and explicit straight line code. This refinement however
adds an additional technical bit to the approach: a freshness monad is used to introduce adequately the
fresh names provided to the combinators. As a result, when writing a VIR program using CFLang, the
programmer cannot craft explicitly a label, allowing us to ensure that the resulting graphs are always
well-formed. Thus, the user can compile the source language to CFLang, without generating nor proving
anything about the name of the labels.
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Record scfg : Type :=
{ graph : cfg ;
ins : list block_id ;
outs : list block_id }.

Figure 10: Definition SCFG

SCFG Given a control-flow graph, we want to hide some inputs and some outputs of the cfg. Indeed,
we want to internalize the labels we statically know won’t ever be linked again to another graph — such
as the one involved in a loop — and we want to expose only the labels that may be linked. Thus, we
introduce an intermediate data-structure exposing a subset of the labels of a graph.

A Safe Control-Flow Graph, dubbed SCFG, is a control-flow graph with a subset of its inputs and a
subset of its outputs visible to the user. Formally, the datatype SCFG is defined as a record with three
fields, as described in Fig. 10. A SCFG dg should respect some well-formedness properties to be valid.
We say that dg is well-formed if:

• (ins dg) ⊆ (inputs (graph dg)) - ins exposes a subset of the inputs of the graph

• (outs dg) ⊆ (outputs (graph dg)) - outs exposes a subset of the outputs of the graph

• wf_cfg_bid (graph dg) - the graph is well-formed regarding the uniqueness of the labels

• (ins dg) ∩ (outs dg) = ∅ - the visible inputs and the visible outputs are disjoints

The SCFG has two purposes. First, to guarantee statically that the well-formedness of our graph
cannot be compromised by a future linking. For instance, linking two times the same outputs to different
inputs would create two times an empty block with the same label and thus breaks the unicity property:
we prevent this situation by internalizing such labels. Secondly, the SCFG fills the gap between an
anonymous representation (such as CFLang, introduced below) and a named representation of the CFG
(such as the one from VIR, as manipulated by the combinators). It always exposes a valid subset of the
concrete names of the graph.

cgraph ::= CBlock code
| CSeq cgraph1 cgraph2

| CIfThenElse cond cgraphT cgraphF

| CWhile code cond cgraphB

Figure 11: The syntax of CFLang, where code is a list of VIR instructions and cond is a VIR expression
.

Syntax CFLang CFLang (Control-Flow Language) is a DSL manipulating control-flow graphs without
labels. It describes the control flow of graphs with one input and one output. Fig. 11 shows the
grammar of CFLang. Introducing a concrete syntax for the DSL ensures statically that a compiler is
written strictly using the underlying combinators, and does not introduce any unsafe construction akin
to break the invariants.

As such, a program in CFLang is refined into a SCFG by the function
evaluate : CFLang → (FreshState → FreshState * SCFG). The labels are generated thanks to a freshness
monad. The state of the freshness monad maintains a counter, used to create an fresh label. The
compiler from CFLang to SCFG has been proved to produce a well-formed SCFG, meaning that the VIR
code encapsulated in the SCFG is well-formed.

As a new intermediate layer, we have to characterize the semantic of the abstraction. It consists in
providing an equational theory for CFLang. The equations are close to the equations of the combinators,
but the labels are concrete and belong to the exposed labels of the SCFG. To illustrate this similarity,
we provide the semantic equation of CSeq in Fig. 12. We may notice that the equation is identical to
the equation Fig. 8, but the labels out1 and in2 have been replaced by the head of ins and outs of
the produced SCFG. The proof-method is a mix of the equational theory of the combinators and the
meta-theory if the freshness monad to ensure the preconditions.

11



Lemma denote_cseq : ∀(s1 s2 s3 : FreshState) (c1 c2 : CFLang) g1 g2 (ins1 outs1 ins2 outs2
to target from : block_id),

((evaluate c1) s1) = (s2, {| graph := g1; ins := ins1 ; outs := outs1 |}) →
((evaluate c2) s2) = (s3, {| graph := g2; ins := ins2 ; outs := outs2 |}) →
In to (inputs g1) →

(denote_cflang (CSeq c1 c2) s1 from to)
≈

(d � denote_cfg g1 from to ;;
match d with
| inr dv ⇒ ret (inr dv)
| inl (src, target) ⇒

if eqb_bid target (hd default_bid outs1)
then denote_cfg g2 (hd default_bid outs1) (hd default_bid ins2)
else denote_cfg g2 src target

end).

Figure 12: Denotation of CSeq

Meta-theory of the freshness monad The freshness monad maintains a state with a counter for
the label generation. At each generation of a fresh label, the counter is incremented and the state is
ensuring the freshness of the labels. We denote σi a state and CB(σi) the counter of the state. For
simplicity, we conflate here the natural numbers generated by the counter with the labels themselves; in
practice, there are a few technical difficulties involved in bridging the gap, but they essentially boil down
to the naming schema used name : nat → block id being injective. The generation of a fresh label from
a state σ0 creates a label CB(σ0) and returns a new state σ1 such that CB(σ0) < CB(σ1).

The compilation of CFLang, compile c σ0 = (σ1, dg), generates label in the interval CB(σ0) to CB(σ1).
Formally, we have ∀ label ∈ (labels dg), label ∈ [CB(σ0), CB(σ1)], which is the main theorem of the
meta-theory. As a corollary, we can prove that if two pieces of code c1 and c2 are compiled successively,
compile c1 σ0 = (σ1, dg1) and compile c2 σ2 = (σ3, dg2) with CB(σ1) ≤ CB(σ2), all the labels of dg2
are strictly greater than the labels of dg1. In particular, it ensures the disjointness between the labels
of dg1 and the labels of dg2. Similar reasoning let us define the set of invariant necessary to ensure the
preconditions of the equations of denotation of the unsafe combinators

Recipe The DSL can evolve, depending the needs and its expressivity. Thus, we propose a recipe to
add new combinator to the DSL:

1. Define the unsafe combinator given the graphs and the labels we want to link — it may contain
additional information such as a condition;

2. Define its equation of denotation and prove it: it may require some preconditions encapsulated in
a well-formedness property;

3. Add a new term in syntax of CFLang, define its compilation in SCFG and prove that the invariant
still correct;

4. Define (and prove) the lemma stating that using the DSL, the WF hypotheses needed for the
denotation lemma are ensured.

For instance, we propose as further work to apply this recipe to the implementation of a for loop, as
used in HELIX notably.

4 Case study - Compiler IMP to VIR

In order to demonstrate the efficiency and the usability of our approach, we perform a case study by
writing a compiler from IMP to VIR, using CFLang for the label generation.
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Figure 13: Compilation chain of the compiler from IMP to VIR

Compiler The compiler from IMP to CFLang is pretty straightforward. It compiles the IMP expressions
into VIR instructions. The register names are generated thanks to a freshness monad, but is not managed
by out abstractions yet — it could be interesting to integrate the register name generation into an
abstraction as a further work. The IMP control-flow instructions are compiled into CFLang instructions.
Since the combinators and CFLang were inspired by IMP, for each IMP control-flow instruction, it exists
its CFLang version. Finally, to complete the compile chain, it suffices to compile the generated CFLang

program into a SCFG, extract the CFG and add the remaining information (such as the entry point) to
create a VIR program. Fig. 13 summarize the compilation chain. The new abstract layers in the chain
are the red parts of the figure. We recall that thanks to the CFLang, the unsafe VIR combinators are
safely used.

Correctness Since the abstraction CFLang to VIR produces a well-formed code, the whole compilation
chain from IMP also produces a well-formed code.

The whole semantic of IMP has been defined in [3]. We recall it in Fig. 14.

Fixpoint denote_expr (e : expr) : itree eff value :=
match e with
| Var v ⇒ trigger (GetVar v)
| Lit n ⇒ ret n
| Plus a b ⇒ l � denote_expr a ;; r � denote_expr b ;; ret (l + r)
| _ ⇒ ...
end.

Fixpoint denote_imp (s : imp) : itree E unit :=
match s with
| Assign x e ⇒ v � denote_expr e ;; trigger (SetVar x v)
| Seq a b ⇒ denote_imp a ;; denote_imp b
| If i t e ⇒

v � denote_expr i ;;
if is_true v
then denote_imp t
else denote_imp e

| While t b ⇒
iter (fun _ ⇒

v � denote_expr t ;;
if is_true v
then denote_imp b ;; ret (inl tt)
else ret (inr tt))

| Skip ⇒ ret tt
end.

Figure 14: Denotational semantic of IMP

There is a typeclass constraint ImpState -< E, indicating that E permits ImpState actions. The actions
of ImpState are GetVar (x : var) : ImpState value and SetVar (x : var) (v : value) : ImpSatet unit.

We recall that to prove the correctness of a compiler using the ITrees, we have to prove that the
ITree representing the semantic of the source code is bisimilar (regarding the eutt abstraction) with the
ITree representating the semantic of the compiled code. But, the memory model in both ITrees are not
necessarily the same and the bisimulation does not hold over uninterpreted ITrees. Here, this is because
the compiler introduces intermediate registers. In a first place, we have to explain how the reads/writes
in the memory of IMP are related with the effects on the memory of VIR. In other words, we have
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to define an invariant relating the environment of IMP with the environment of VIR. Informally, if a
variable k in the IMP environment is associated to a value v, it should exist a register associated to k,
containing an address pointing to the same value v. Formally, the relation is defined in Fig. 15.

Definition Rmem (vmap : StringMap.t int)(env : Imp.env) (venv : local_env) (vmem :
memory_stack) : Prop :=

∀ k v, alist_find k env = Some v � >
( ∃ reg, StringMap.find k vmap = Some reg ∧
∃ addr, alist_find (Anon reg) venv = Some (UVALUE_Addr addr) ∧
∃ v32, read vmem addr (DTYPE_I (Npos 32\%positive)) = inr (UVALUE_I32 v32) ∧
Int32.intval v32 = Z.of_nat v ).

Figure 15: Relation environment IMP and memory VIR

In order to compare the itrees of IMP and VIR, we have to interpret the effects. But it suffices
to interpret only the four first levels on VIR to compare the itrees. As shown in Fig. 5, the four first
levels of interpretations concerns the local environment, global environment and memory events whereas
the last levels concerns the undefined behaviors. IMP does not generates undefined behaviors, but it
generates memory event. Thus, the lowest level of interpretation is the fourth, allowing us to reason on
the simplest monad manipulating the memory.

The last step of the verified compiler is to prove its correctness theorem. During the internship, I had
no time to prove the complete theorem of correctness, which is indeed an ongoing work. As a preliminary
result, writing a compiler targeting VIR is much easier with CFLang as intermediate representation. Even
if I had no time to do the whole semantic construct, the equational theory of CFLang seems to work
and ease the reasoning. Unfortunately, it remains some preconditions not managed by the theory of the
freshness monad, such as the has_post precondition for the while combinator in Fig. 9, stating that the
denotation of the body should jump in the correct output block.

5 Related Work

Reason over a freshness monad In the paper Tale of Monad in Coq [8], P.Nigron and P.-E. Dagand
deal with the verification of imperative programs in a proof assistant. The main issue is to represent the
effects of the imperative programs in a pure language — i.e. without effects — such as Gallina (in Coq).
The previous work in this domain led to a generalization of monads and algebraic effects. In particular,
this work focuses on the use of the freshness monad to generate labels, a common monadic problem.
They propose a dedicated separation logic to reason about the monadic effects (here, the freshness),
and they propose an implementation of this logic by instantiating the Iris/MoSel framework [9]. The
separation logic allows to reason about local invariant, whereas the global invariant of disjointness holds
thanks to the separation logic.

The logic could be use to ease the reasoning on the freshness monad for the engineer, but it does not
spare the label generation. The main hurdle to compare our work is that Vellvm does not support the
Iris framework yet. However, our work goes further and adds two layers of abstractions: one for the
labels generation and one for the compositional combination of cfgs. It completely avoids the reasoning
on the labels and allows to reason purely equationally, which is far easier than doing the reasoning with
the separation logic in Iris.

Nameless Label As explained previously, we propose a set of combinators not statically typed and
living in a named world. Theses approaches have advantages and drawbacks: it is easier to reason over
named labels and to define the semantic equations of the combinators than a statically typed structure,
but the preconditions needed to use them have to be ensured by a second layer of abstraction.

During its internship, Nicolas Chappe has explored another approach of the combinators, using
anonymous labels. He proposed a set of low-levels combinators, such as merge (new graph by concate-
nation of two graphs side-by-side, but without linking between them) or reorder (permutation of the
inputs/outputs), statically typed using vectors with anonymous labels. The intermediate representation
is a function taking a list of labels and naming the blocks of the graphs. It ensures that, if the input
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list of labels has no duplicate, the uniqueness of the block id of the graph holds. This approach is
syntactically elegant. It is based on three categories of labels: the inputs, the outputs and the internals,
which is similar with the approach of the ASM labels in [3]. However, the semantic characterization of
such combinators is hardly non-trivial, and their proof needs a relabeling meta-theory and non-trivial
arithmetic.

The work of A. Rouvoet et al. [10] addresses similar issues, in a different context: how to deal with the
uniqueness and the well-definition of label name in the context of intrinsically typed compilation targeting
labeled bytecode. They propose a solution based on a nameless and co-contextual representation of the
typed labels. A clever use of proof-relevant separation algebra [11] (based on separation logic) abstracts
the co-context and their composition, and provides an high-level language to reason about the nameless
labels. The framework, implemented in Agda, is a bit complicated to compare with our in Coq.

6 Conclusions and future work

6.1 Conclusions

Summary Verify the correctness of a compiler is often closely bound with well-formedness of the
generated code, in particular when the compiler introduces new names. The usual way to deal with
name generation is to define an ad-hoc freshness monad, specific to the compiler, but it is annoying to
prove its correctness and not interesting semantically. The Intermediate Representation of LLVM led to
the creation of various frontend. For a project aspiring to formalize the intermediate representation of
LLVM, we do not want to prove the theory of an ad-hoc freshness monad for each new verified compiler
targeting VIR.

In consequence, we propose to abstract the label generation and to embed the freshness monad into
a DSL, CFLang. The language provides a set of high-level combinators over VIR control-flow graphs.
Moreover, the library provides a set of denotation lemmas, allowing to construct the semantic of the
compiler equationally. Finally, an ongoing work tends to demonstrate the usability of the equation of
denotation to prove the correctness of a compiler from IMP to VIR, using CFLang for the label generation.

6.2 Limits and Future directions

Expressitivy The combinators and the DSL were inspired by the IMP language. Thus, we wanted
that the combinators and CFLang to be at least expressive enough to compile IMP. A natural question
we ask is the expressivity of CFLang. Specially, is it expressive enough to compile real world language
? In order to push the limits of our approach on a real-world compiler, it could be interesting to use it
for the label generation of HELIX. It probably needs some remaining work to easily use the combinators
with HELIX, such as implement a new combinator for the for loops.

In addition, the abstractions were initially design to deal with the code generation. An interesting
follow-up the question of the code transformation - i.e. optimizations on CFLang. Here too, is the language
expressive enough to do optimizations on the CFG ? Thus, a future direction is to use our abstractions
to do optimizations over control-flow graphs (e.g. “loop unfolding”).

The main expressivity limit of the CFLang, and the underlying combinators, is that it does not handle
the phi-nodes, an important concept in SSA. A further step could be to construct a CFLang program
from a VIR cfg, but the abstractions needs to manage the phi-nodes, which is not the case currently.

Renaming Create a new empty block to do the linking in order to avoid the relabeling is a questionable
design choice. It adds useless blocks and is based on a later elimination of the dead block optimization
; an additional step which could be spared.

Low level combinators Finally, we could try an approach with low-levels combinators inspired by
the combinators of Nicolas, following the recipe to design such combinators (merge, reorder, . . . ) and
compare the expressivity with the high-level combinators.
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