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Abstract

This document explores the impact of extending the CHERI architecture with indi-
rect sentries on the core security guarantee of CHERI, capability safety. Indirect sentries
are a new type of capabilities that makes executing (potentially adversarial) code more
straightforward, and in particular avoids boilerplate trampoline code when creating a form
of compartment (closures that work with a specific context). We extend Cerise, a simplified
capability machine, with indirect sentries, and develop a heap-based calling convention that
does not rely on trampoline code. We then prove capability safety and illustrate it on key
examples demonstrating local state encapsulation.
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CHERI, Cerise, robust safety.
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1 Indirect sentries, informally

Capability machines Capability machines enable fine-grained memory safety by working
with hardware capabilities, which are unforgeable tokens of authority. Each word in memory
and in registers can be either a plain integer, or a capability, which can only be derived from
other capabilities with more authority (this is called “capability monotonicity”). Typically, a
capability is a fat pointer, containing not only an address, but also permissions and bounds.
Memory accesses then require appropriate capabilities, and cause a fault otherwise, which pre-
serves safety: the unauthorised action is not performed. For example, a write to memory
expects, in its destination register, a capability that witnesses the authority to write to that
address.

Encapsulated closures While capabilities rule out most of the traditional memory safety
vulnerabilities due to the pointer-as-integer representation, capabilities can also be used to
encode more elaborate abstractions (as common in higher-level languages). In particular, capa-
bilities make it possible to create closures that enforce local state encapsulation (LSE). A more
specific use case is that of a closure that encapsulate private local state, and that can be safely
invoked by untrusted code. Switching to a different closure also changes the authority. That
way, encapsulated closures with completely different authorities can invoke each other without
putting their own private state at risk. This is the use case that we focus on in this document,
and which we use in a calling convention that enforces local state encapsulation by dynamically
creating closures.

Indirect sentries In this document, we explore the implementation of encapsulated closures
using indirect sentries, a new type of capability developed as part of CHERI [17], a capability ar-
chitecture developed over the last decade in collaboration between the University of Cambridge,
SRI International, and Arm.

The purpose of indirect sentry capabilities is to facilitate the construction of closures with
a fixed entry point and a specific context. The CHERI ISA-V9 [17] proposes two flavours of
indirect sentry capabilities, and the Morello documentation implements both of them: points-to-
pair [17, §C.8.2] [3, §4.4.10(BLR)], and points-to-PCC [17, §C.8.1] [3, §4.4.75(LDBPR)]. In this
work, we focus on the ‘points-to-pair’ flavour. In Cerise [7], we model a ‘points-to-pair’ indirect
sentry capability as a capability with a new ie permission (in CHERI, this is implemented as a
reserved ‘otype’). The expectation is that it points to the pair of a code capability immediately
followed by a data capability. Jumping to an indirect sentry capability tries to load the word
that the capability points to (which is expected to be a code capability) into pc, and the following
word (which is expected to be a data capability) into idc. If the addresses are not in the bounds
of the capability, the jump will fail. If these addresses do not contain capabilities, the program
will likely fault at a later step. Figure 1 shows a representation of an indirect sentry (ie, b, e, a)
in memory, and Figure 2 shows the evolution of the state of the machine when jumping to an
indirect sentry.
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Figure 1: Indirect Sentry capability (points-to-pair flavour)
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(b) State of the machine after the jump

Figure 2: Jump to an Indirect Sentry. Parts of the memory that the machine does not have
direct access to is greyed out .

Indirect sentries makes it straightforward to encode an encapsulated closure, namely by writ-
ing the closure’s code capability and data capability to two adjacent addresses, and restricting
a capability to these addresses to the ie permission.

Why indirect sentries? / Other types of closure capabilities CHERI supports two
other ways to encode closures: pairs of sealed capabilities, and sentry capabilities. Pairs of
sealed capabilities are very flexible, and make it possible to invoke the same code with different
private states, but rely on a limited pool of identifiers (otypes), and they are moreover quite
difficult to formally reason about. On the other hand, sentry capabilities require boilerplate
trampoline code mixing code and data. Trampoline code mixing code and data is undesirable,
because it breaks the principle of least privilege. Moreover, code and data are linked together,
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and as a consequence, multiple instances of the same code for different data require duplication
of code. Indirect sentry capabilities are designed to address these shortcomings in the case of
encapsulated closures, where the code is called with the same data.

In this work, we want to prove that indirect sentries provide the expected security guarantee,
namely capability safety. To do so, we extend Cerise, a simplified, CHERI-like capability ma-
chine, with indirect sentry capabilities. One of the purposes of Cerise is to provide a platform for
researchers to explore new features for capability machines and study their security properties,
and thus inform the evolution of CHERI. Cerise is defined in the Coq Proof Assistant, which has
made it possible to mechanise proofs of functional correctness of programs, even in interaction
with unknown, untrusted code. To verify such programs, Cerise comes with a program logic
built on top of Iris, which makes it possible to write and prove the specification of programs
with known code. In addition, Cerise comes with a characterisation of an upper bound on the
behaviour of arbitrary instructions, in the form of a logical relation. In a sense, this logical
relation works as a universal contract given by the machine, and intends to capture capability
safety. This way, this logical relation makes it possible to reason about the interaction of known
code with unknown code.

Contributions In this work, we extend the Cerise machine with indirect sentries, prove new
program logic rules to reason about them, and extend the logical relation to capture their
behaviour. In particular, the logical relation captures what it means for an indirect sentry to be
safe to share with unknown code. Finally, we illustrate how this extension allows to reason about
key representative programs involving non-trivial use of data closures with indirect sentries: a
counter library, and a secure heap-based calling convention. We demonstrate that our calling
convention is secure by using it in a sub-buffer example. Those examples are an adaptation of
earlier work [7].

Our work should extend to other secure stack-based calling convention, as the one based on
uninitialised and local capabilities [8], the one based on uninitialised and directed capabilities [6],
or the one based on local capabilities and stack clearing [14]. They all strictly reduce the
memory footprint of the calling convention, without much disadvantages, thus strengthening
the motivation to support indirect sentries.

Mechanisation The results are mechanised in Coq, and are available online [13]:
https://github.com/logsem/cerise/tree/bastien/indirect-sentry.

Plan In the following sections, we define the operational semantics of Cerise extended with
indirect sentries (§2), a program logic to reason about known code (§3), and a logical relation
that captures the effect of unknown code (§4). In these sections, the original ‘Vanilla’ Cerise
model is described in black, and our additions related to indirect sentries are highlighted in
blue.

2 The Cerise machine

Syntax Cerise models a capability architecture based on the CHERI architecture. Figure 3
shows the model of the machine. The machine state Σ keeps track of the state of the register
file, the memory, and the current state of the machine, whether it is currently running, halted or
entered a failed state due to an illegal operation. The memory of the machine Mem ranges over
a finite set of addresses (up to AddrMax). The machine does not have any distinction between
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a ∈ Addr ≜ [0,AddrMax]
p ∈ Perm ::= o | ie | e | ro | rx | rw | rwx

c ∈ Cap ≜ {(p, b, e, a) | b, e, a ∈ Addr}
w ∈ Word ≜ Z+Cap

reg ∈ RegFile ≜ RegName → Word

m ∈ Mem ≜ Addr → Word
s ∈ ExecState ::= Running | Halted | Failed
σ ∈ ExecConf ≜ Reg ×Mem

Σ ∈ MachineState ≜ ExecState× ExecConf

rwx

rw rx

ro

ie e

o

Lattice defining the ≼ relation.

(We have p1 ≼ p2 if there is a path going up from p1 to p2 in the diagram.)

r ∈ RegName ::= pc | r0 | r1 | . . . | r31
ρ ∈ InstructionArg ≜ Z+RegName
i ∈ Instruction ::= jmp rdst | jnz rdst rcond |

mov rres ρexpr | add rres ρe1 ρe2 | sub rres ρe1 ρe2 | lt rres ρe1 ρe2 | lea rres ρexpr |
load rres rsrc | store rres ρsrc | restrict rres ρsrc | subseg rres ρ1 ρ2 |
isptr rres rsrc | getp rres rsrc | getb rres rsrc | gete rres rsrc | geta rres rsrc |
fail | halt

Figure 3: Base definitions for the machine’s words, state, and instructions. The Coq definition
also has capability types and instructions for sealing and unsealing, but do not support sealed
pairs. We omit those here as they are not relevant for this work.
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regions of memory. In particular, it does not have a specific region for the stack. The register
file RegFile ranges over the registers pc and r0 to r31. We use the name idc to refers to the
register r0. The pc register is the program counter register, and idc is the invoked data register,
hereafter called the data register. The data register is reserved, by convention, to receive the
data word of an invoked indirect sentry.

The memory and the registers manipulate machine words, that are either integers or ca-
pabilities. The machine uses integers for the sole purpose of arithmetic operations, whereas it
uses capabilities to address the memory. A capability c is of the form (p, b, e, a). It points to
the address a, and ranges over the addresses [b, e) with the permission p. The permissions are
ordered by the relation ≼ given by the lattice in Figure 3. A capability permission allows to
read (r), write (w) or execute (x) the content of the address it points to. On top of these usual
permissions, the machine has two additional permissions to opaque closures: the entry e and
the indirect sentry ie permissions. Entry and indirect sentry capabilities cannot be used to load
or store in the memory, and their bounds and their address cannot be changed. The only way
to use them is to jump to them. They are a way to perform a controlled domain transition, i.e.,
change non-monotonically the authority. The execution of the machine is described in details
by the operational semantics.

i JiK(σ) Conditions

store r ρ updPC(σ[mem.a 7→ w])
σ.reg(r) = (p, b, e, a) ∧ b ≤ a < e
∧ p ∈ {rw,rwx} ∧ w = getWord(σ, ρ)

restrict r ρ updPC(σ[reg.r 7→ w])
σ.reg(r) = (p, b, e, a)
∧ p′ = decodePerm(getWord(σ, ρ)) ∧ p′ ≼ p
∧ w = (p′, b, e, a)

jmp r

 Executable,

σ

[
reg.pc 7→ newPc,
reg.idc 7→ newIdc

] 
if σ.reg(r) = (ie, b, e, a)
then b ≤ a < a+ 1 < e

∧ newPc = σ.mem(a)
∧ newIdc = σ.mem(a+ 1)

else newPc = updatePcPerm(σ.reg(r))
∧ newIdc = σ.reg(idc)

jnz rdst rcond


Executable,
if σ.reg(rcond) ̸= 0

then σ

[
reg.pc 7→ newPc,
reg.idc 7→ newIdc

]
else updPC(σ)


if σ.reg(rdst) = (ie, b, e, a)
then b ≤ a < a+ 1 < e

∧ newPc = σ.mem(a)
∧ newIdc = σ.mem(a+ 1)

else newPc = updatePcPerm(σ.reg(rdst))
∧ newIdc = σ.reg(idc)

Figure 4: Excerpt of the operational semantic of Cerise with Indirect Sentries.

Operational semantics At every step of execution, if the machine is Running, the machine
checks that the pc register contains a valid PC capability, i.e., an in-bounds, executable capa-
bility. It then fetches and decodes the instruction contained in the address the PC capability
points to, and executes the instruction according to its semantics. If the PC capability is not
valid, if the fetched word cannot be decoded into a valid instruction, or if the instruction is
illegal, the machine fails.

Figure 4 shows an excerpt of the operational semantics, for the execution of one instruction.
The full operational semantics can be found in Appendix A. For example, assuming that register
r contains an in-bounds write capability pointing to address a (that is, a capability (p, b, e, a)
with the address a in the bounds [b, e), and with the permission p ∋ w), the instruction store r ρ

stores the word from ρ at address a. An instruction argument ρ ∈ (Z + RegName) can either
be an immediate (i.e., an integer) or a register name.
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The introduction of the indirect sentry changes the semantics of several instructions, but
most of them are quite straightforward. As such, we focus on the jumping instructions (i.e., jmp
and jnz). The only way to use an indirect sentry is to jump (via a jmp or a jnz instruction),
which performs a domain transition. Upon jumping, the machine unseals the indirect sentry
pointing to a and performs two capability loads, of the two consecutive addresses a and a+ 1.
For each capability load, the machine checks that both addresses a and a+1 are in the bounds
of the capability. To construct an indirect sentry, we can use the restrict instruction on any
capability with the read permission. In the spirit of delaying errors as much as possible, no
other check is performed: the current address of the capability does not have to be in between
the bounds, and the words to which the capability points to does not have other requirements.

Stack Vanilla Cerise [7], on which we build, does not have an explicit stack. Given that we are
exploring calling conventions, this might seem unusual. However, the aspect we are concerned
with in this work, namely Local State Encapsulation and Capability Safety, are orthogonal
to the concerns of a system with explicit stack, such as Well Bracketed Control Flow and
Capability Revocation. These last aspects require another features, a locality bit [14], to be
enforced. In this document, we oppose heap-based calling convention §5.2 to stack-based calling
convention §7. The former uses heap allocation to store the local state, while the latter uses an
explicit stack with the locality bit.

3 Program Logic

The Cerise program logic [7, §4], as well as our extension, is build on top of the Iris Separation
logic [10]. Separation logic has been widely used to reason about programs with mutable state,
such as memory. Moreover, it enables modular reasoning, which allows composition of program
with disjoint state. Thus, the Iris logic framework is well-suited to our purpose. Figure 5
presents the syntax of our program logic.

Base logic from Iris Iris is an impredicative higher-order separation logic. As such, Iris
propositions include the usual proposition of higher-order logic: conjunction ∧ and disjunction
∨, universal ∀ and existential ∃ quantification, etc.. And those of usual separation logic: the
separating conjunction ∗, and the magic wand −∗. The pure proposition ⌈φ⌉ holds if the propo-
sition φ from the meta logic holds. In addition, Iris features a persistency modality �, a ‘later’
modality ▷, and invariants, which we quickly describe below.

• Iris propositions can be either ephemeral or persistent. Ephemeral propositions might

P,Q ∈ iProp ::=
True | False | ∀x. P | ∃x. P | . . . higher-order logic
| P ∗Q | P −∗ Q | ⌈φ⌉ | �P | ▷P separation logic

| P invariants
| a 7→ w memory points-to
| r Z⇒ w register points-to
| ⟨P ⟩ → ⟨s.Q⟩ | {P}⇝ {s.Q} | {P}⇝ • Hoare triples

We also write [b, e) 7→ l⃗ ≜ ∗
i∈0..e−b−1

(b+ i) 7→ l⃗ [i] for contiguous memory region points-to.

Figure 5: Syntax of assertions
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be invalidated at some point and are not duplicable. On the other hand, persistent
propositions always hold, and can thus be duplicated. The proposition �P describes the
persistent, duplicable part of P .

• The ▷P proposition is largely a technicality, and we refer the reader to [10, §5.5] for
details, but it roughly means that P holds “after one logical step of execution”.

• An invariant P states that P holds now and at all future steps of execution. It can be
opened in one execution step to access P , but must be restored by the end of the step. For
the exact details of opening and closing invariants, and for examples, we refer the reader
to [10, §2.2].

On top of Iris, in Cerise, we define logical resources that allow us to relate the operational
semantics with the logic:

Points-to assertions

• The resource a 7→ w is the usual points-to of separation logic, which expresses exclusive
ownership of the address a, and knowledge that the memory contains the word w at that
address.

• r Z⇒ w is the corresponding assertion for registers: it expresses exclusive ownership of the
register r, and knowledge that the register file contains the word w in that register.

Hoare Triples In order to specify programs, we define three kind of triples, similar to
Hoare triples. Here, we write P for a proposition describing the machine state in the precondition
of the triple, and s.Q for the postcondition of the triple, where s binds the execution state in
Q.

• ⟨P ⟩ → ⟨s.Q⟩ describes the specification a single instruction execution. It holds if the
machine starts in a state satisfying P , and ends in a state satisfying Q after one execution
step.

• {P}⇝ {s.Q} describes the specification of a code fragment. It holds if the machine starts
in a state satisfying P , and either diverges or reaches a state satisfying Q.

• {P} ⇝ • describes the complete, safe execution. It holds if the machine starts in a state
satisfying P , and either diverges or runs until it halts of fail.

It is possible to sequence and interleave the different kind of specification. We refer the reader
to Cerise [7, §4.2] for the exact sequencing rules.

We use the notations

{P}⇝ {Q} ≜ {P}⇝ {s. ⌈s = Running⌉ ∗Q}
⟨P ⟩ → ⟨Q⟩ ≜ ⟨P ⟩ → ⟨s. ⌈s = Running⌉ ∗Q⟩

in case the execution does not stop. Moreover, we use the notation

w;P ≜ pc Z⇒ w ∗ P

as a shorthand for ownership of the pc register, because the specifications always requires the
register points to resource for pc.
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Jmp-not-IE
ValidPC(ppc , bpc , epc , apc) decode(n) = jmp r not IE cap(w)

⟨(ppc , bpc , epc , apc) ; r Z⇒ w ∗ apc 7→ n⟩ →
⟨updatePcPerm(w) ; r Z⇒ w ∗ apc 7→ n⟩

Jmp-IE
ValidPC(ppc , bpc , epc , apc) decode(n) = jmp r b ≤ a < a+ 1 < e

⟨(ppc , bpc , epc , apc) ; idc Z⇒ ∗ r Z⇒ (ie, b, e, a) ∗ apc 7→ n ∗ a 7→ w1 ∗ (a+ 1) 7→ w2⟩ →
⟨w1 ; idc Z⇒ w2 ∗ r Z⇒ (ie, b, e, a) ∗ apc 7→ n ∗ a 7→ w1 ∗ (a+ 1) 7→ w2⟩

Jmp-IE-not-in-bounds
ValidPC(ppc , bpc , epc , apc) decode(n) = jmp r (a /∈ [b, e) ∨ (a+ 1) /∈ [b, e))

{(ppc , bpc , epc , apc) ; r Z⇒ (ie, b, e, a) ∗ apc 7→ n}⇝
{s. ⌈s = Failed⌉ ∗ r Z⇒ (ie, b, e, a) ∗ apc 7→ n}

Figure 6: Example of weakest-precondition rules.

Figure 6 shows two specifications for the jmp r instruction. For both rules, the differences
between the post and pre condition is highlighted in blue.

The first rule Jmp-not-IE specifies the jump to a word that is not an indirect sentry ca-
pability. It states that, if the pc contains a valid PC capability pointing to the encoding of
jmp r, and that the register r points to any word w that is not a sentry capability, then after
the execution, the pc register contains the updated version of w, i.e., if w = (e, b, e, a), then
updatePcPerm(w) = (rx, b, e, a), otherwise updatePcPerm(w) = w.

Similarly, the second rule Jmp-IE specifies the (successful) jump to an indirect sentry capa-
bility. The precondition of the rule states that the pc register contains a valid PC capability
pointing to the encoding of jmp r, the register r points to a valid indirect sentry capability
(ie, b, e, a) (valid meaning, the addresses a and (a+1) are in the bounds of the capability), and
the addresses a and (a+ 1) respectively points to the words w1 and w2. After the execution of
the instruction, the pc now contains the w1 and the idc register contains w2.

We highlight that the specification for Jmp-IE requires more resources than Jmp-not-IE.
Because of the level of indirection, the specification requires the address points to predicates
for a and (a + 1), and because the instruction also has the idc register as destination register,
the specification also requires the register points to predicate for idc. In practice,

The rule Jmp-IE presented in Figure 6 is actually an instance of a more general rule, which
also specifies the cases where some addresses or registers are equals. For the precondition Jmp-

IE to hold, it requires the addresses a, (a+1) and apc to be different from each others. Similarly,
it means that the registers pc, idc and r are all different. However, the operational semantics
does not prevent those cases, and the more general rule also specify them.

3.1 Adequacy

An adequacy theorem is a theorem that links certain specifications in terms of the program logic
to specifications purely in terms of the operational semantics. Using an adequacy theorem, we
can show that the user-defined memory invariants that hold throughout the complete, safe
execution of the machine also hold at the level of the operational semantics. The adequacy
theorems of our program logic are the same as the adequacy theorems for the Cerise program
logic [7, §4.3], which themselves build on top of the more general Iris adequacy theorem.
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4 Logical Relation

4.1 Context: (unityped) logical relations for capability machines

The challenge we are concerned with is that we want to reason about robust safety, showing
specifications that involve state encapsulation. For example: this program fragment has a
location that is ‘private’ to it, in the sense the location will not be modified by the rest of the
program, even if the rest of the program includes unknown, arbitrary, and potentially adversarial
code that the code fragment hands control over to (for example by a jump).
Capability monotonicity [4] makes it possible to reason up to a domain change. More concretely,
one can recursively compute the transitive authority granted by a word w (made available to
the adversary) by instructions other than jumping: if w is a capability, then it has authority
over its bounds, plus the authority granted by the words in bounds, recursively. If an address
is not covered by this authority (or merely readable, but not writeable), then it can indeed not
be modified until a domain change.
If we want to reason about unknown code that includes jumps back into the program fragment
that has private state, then we need a more expressive property than capability monotonicity.
Figure 7 gives a representation of what our property intends to capture. In this setting, the
authority can change non-monotonically during execution, and can thus cover the private state.
This is challenging to reason about, because we need to reason about the fact that the program
gets authority over this private state, yet the adversary is unable to use this authority to change
the private state as it wishes, but merely as the program fragment explicitly allowed it via the
code it explicitly exposes.
Concretely, we want our property to allow us to reason about the following type of example.
Consider a code fragment which has private location a that wants to preserve the invariant that
a always contains a non-negative integer. Consider that the code fragment exposes an entry
point that increments the number and returns the new value. As long as only this entry point
is exposed, calling the adversary should respect the invariant, even though the adversary can
jump to the exposed increment entry point. If we merely computed the authority as a set, then
this private location a would be included in that set, and so we could not conclude that its
contents is always non-negative. (This is similar to closures in higher-level languages. However,
in high-level languages, private state encapsulation is a language-level guarantee. Here, it has
to be implemented using capabilities as building blocks, and so does not hold trivially.) Figure 8
gives a representation of such an example.

We define this relation V in Iris, and rely on Iris’ built-in notion of resources. Specifically,
we can write that a contains a non-negative integer formally as R ≜ ∃n. ⌈n ≥ 0⌉ ∗ a 7→ n, and
make it into an Iris invariant as R . Then, to show that jumping to the adversary’s code while
giving it access to a word w is safe in the sense that it will not break the invariant R (or, put
another way, to show that w is safe-to-share), it suffices to show that R is compatible with
V(w), as captured by R ∗ V(w). In particular, because a 7→ expresses exclusive ownership of
a, and is thus not duplicable, this means that R and V(w) cannot both contain a 7→ , and so
V(w) cannot contain it. Defining “w is safe” (our desired V(w)) in a way that makes it obvious
that it captures safety is technically challenging, and so we define it somewhat indirectly: we
split the definition in two: V(w), “w is safe-to-share”, and E(w), “w is safe-to-execute”. We
then prove that any word w that is safe-to-share is also safe-to-execute, which means that w
is safe. This is the so-called “fundamental theorem of the logical relation”, abbreviated FTLR,
which we return to in §4.3.

We extend the Vanilla Cerise’s logical relation [7, §5.1] (which gives an extensive explanation
of the logical relation), to support indirect sentries.
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Figure 7: Evolution of authority over time: as per capability monotonicity, it decreases (via
subsegs and loss of access) until a domain change (induced by a jmp)

4.2 Our logical relation for indirect sentries

We extend the Cerise logical relation to deal with capability safety in the presence of indirect
sentries. The main new complexity comes from (1) the fact that jumping to an indirect sentry
involves not only the pc register, but also the idc, which needs to be captured by the safe-to-
execute predicate, and (2) the design of safe-to-share for an indirect sentry.

Generalised safe-to-execute The safe-to-execute relation needs to capture the more ex-
pressive domain transition of the indirect sentries. When the machine jumps to an indirect
sentry, it updates both the pc and the idc registers. The purpose of indirect sentries is to start
the execution of the closure with a specific context. As such, the safe-to-execute relation is
really about two words. Technically, the safe-to-execute predicate should be parametrised by
the code value and by the context value, which might not be safe-to-share. In order to be able
to choose the content of the data register, we generalise and relax the definition of E , such that
EG(w1, w2) captures what it means for w1 to be safe-to-execute under the context w2. We then
define the expression relation E in terms of the generalised one

E(w) ≜ ∀w′.V(w′) −∗ EG(w,w
′).

Safe-to-share indirect sentries The intuition behind V(ie, b, e, a) is to capture the fact
that “the state after jumping to an indirect sentry is safe to execute”. We explain the technical
definition using a green labels to refer to specific parts in Figure 9. If the indirect sentry
capability is not in bounds (1), it does not grant any authority and is thus useless, and is
therefore trivially safe-to-share. Because indirect sentries have a level of indirection, the safe-
to-share relation needs to record the points-to predicate of the indirection (3a)-(3b), which capture
the ownership of the addresses a and (a+1), and the knowledge of the code word w1 and the data
word w2. As those resources are meant to be preserved, even when shared with an adversary,
they are encapsulated inside an invariant. In addition, because indirect sentries are immutable,
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time

m
em

or
y

0x0...0

a

0xf...f subseg mov r4 0 jmp

0 0 2 1 7 7
invariant I:
a ≥ 0

0

A

Figure 8: Evolution of authority (coloured regions, drawn as contiguous regions for simplicity;
we also draw authority as binary: coloured or not, when it can be more fine-grained: read,
write, read-write, execute, . . . ) over time.
(1) As per capability monotonicity, authority decreases, via subsegs and overwriting (line of
instructions at the top), until a domain transition (gradient curved arrow) induced by a jmp.
Therefore, address a, which is outside of the initial authority of the adversary (in purple, top
left), does not change before a domain transition.
(2) With capability safety, we can say more: if the initial authority A of the adversary is
compatible with the invariant I stating that the word at address a is non-negative, then even
when the authority of the known code (in blue, bottom right) covers address a after the domain
transition, the word at a remains non-negative.
More technically: to show that it is safe to call the adversary, if we write w0, . . . , w31 for
the roots made available to the adversary in registers r0, . . . , r31, then the proof obligation is
I ⊢ V(w0)∗ · · ·∗V(w31), which requires that A is compatible with the invariant I of the known
code.

we know that some persistent properties hold about the code word and the data word, call them
P1 and P2 respectively (2). Usually, the exact shape of the code and data words are constrained
by P1 and P2. A typical instantiation would be P1(w1) ≜ ⌈w1 = (pcode , bcode , ecode , acode)⌉ and
P2(w2) ≜ ⌈w2 = (pdata , bdata , edata , adata)⌉. Finally, the continuation predicate (4) expresses that
it is safe to execute the machine, if an adversary jumps to the indirect sentry. Although it does
not correspond to the intended use of indirect sentries, the data word w2 can be an integer,
which is likely to lead to a crash later if the following code expects a capability. The actual
reason for the disjunction P2(w2)∨ is int(w2) is quite technical, and we delay the explanation to
the proof of the fundamental theorem in paragraph 4.3. Our study shows that this definition is
complete enough to prove interesting use cases, and we discuss how we could lift this disjunction
in Section 7.2.

4.3 Fundamental Theorem

The Fundamental Theorem of the Logical Relation 1 (FTLR) states that any safe-to-share (in
V) word is also safe-to-execute (in E). Informally, the FTLR means that sharing a safe-to-share
word cannot give extra authority or break memory invariant, even by executing it. The FTLR is

12



E(w) ≜ ∀w′.V(w′) −∗ EG(w,w
′)

EG(w1, w2) ≜

w1 ;

idc Z⇒ w2 ∗∗
{(r,w) | (r,w)∈regs }

r Z⇒ w ∗ V(w)

⇝ •

V(w)



V(z) ≜ True for z ∈ Z
V(o,−,−,−) ≜ True

V(e, b, e, a) ≜ ▷ □ E(rx, b, e, a)
V(rw/rwx, b, e,−) ≜ ∗a∈[b,e) ∃w. a 7→ w ∗ V(w)
V(ro/rx, b, e,−) ≜ ∗a∈[b,e) ∃P. ∃w. a 7→ w ∗ P (w) ∗ ▷□ (∀w.P (w) −∗ V(w))

∗ persistent cond P

V(ie, b, e, a) ≜ (1) ⌈b ≤ a < a+ 1 < e⌉ −∗
(2) ∃P1, P2. persistent cond P1 ∗ persistent cond P2 ∗
(3a) ∃w1. a 7→ w1 ∗ P1(w1)

a ∗
(3b) ∃w2. (a+ 1) 7→ w2 ∗ P2(w2)

(a+1) ∗
(4) ∀w1, w2. ▷� (P1(w1) ∗ (P2(w2) ∨ is int(w2)) −∗ EG(w1, w2))


where

regs ≜ {(r, w) | (r, w) ∈ reg , r ̸= pc, r ̸= idc}
persistent cond P ≜ ∀w.Persistent P (w)

Figure 9: Logical relation defining “safe to share” (V) and “safe to execute” (E).
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sometimes referred as a universal contract, in the sense that every instruction has to respect this
property (see [9]), because a safe-to-share word can contain arbitrary code. [7, §5.2] explains
why the fundamental theorem expresses that the machine “works well” and enables to capture
capability safety.

Theorem 1 (Fundamental Theorem) ∀w.V(w) −∗ E(w)

Usually, the FTLR is not directly used as stated in Theorem 1, but rather by its consequence
stated in Corollary 1. Corollary 1 states that, it is safe to jump to any safe-to-share word, if all
the registers contain safe-to-share values. In other words, to prove that jumping to an unknown
word is safe, it suffices to show that the registers contains safe-to-share values.

Corollary 1 (Jump to a safe word1) For any register ri other than pc,

ValidPC(ppc , bpc , epc , apc) ⊢ ▷ ∀regs.


(ppc , bpc , epc , apc);

apc 7→ jmp ri ∗ ∗
(r,w)∈regs,r ̸=pc

r Z⇒ w ∗ V(w)


⇝ •



We prove that the FTLR still holds with the extension of Cerise with indirect sentries and
our new definition of the logical relation. In the remainder of this section, we sketch the proof of
the FTLR, and highlight the new interesting cases related to the indirect sentries. The proof of
the FTLR explores every possible case of the operational semantics, and checks that it does not
gain authority or break the (user-defined) internal memory invariants of the different closures.
More specifically, if the registers contains only safe values, then after executing any instruction,
the machine reaches a state that did not break any invariant. Similarly to the rules of the
program logic, indirect sentries do not change the proof for most instructions. We focus on the
interesting cases, namely the jmp and restrict instructions.

Proof of the FTLR Let w be a machine word. We show the case w = (ppc , bpc , epc , apc), as
the other cases are trivial.
We proceed by Löb induction: by assuming the FTLR to hold later (after one execution step),
we show that the property holds.

Let
IH ≜ ∀ppc , bpc , epc , apc .V(ppc , bpc , epc , apc) −∗

∀reg .
{
(ppc , bpc , epc , apc);∗(r,v)∈reg,r ̸=pc r Z⇒ v ∗ V(v)

}
⇝ •

and assume ▷ IH. Let further assume V(w). We want to show E(w). By unfolding the definition
of safe to execute, we assume a word widc such that V(widc), and we need to show that, for any
register maps regs such that pc, idc /∈ regs,(ppc , bpc , epc , apc) ;

idc Z⇒ widc ∗∗
{(r,w) | (r,w)∈regs }

r Z⇒ w ∗ V(w)

⇝ •

For the purpose of the presentation, we further assume the content of pc is a valid PC
capability, i.e., pc Z⇒ (ppc , bpc , epc , apc) with ppc ∈ {rx,rwx} and bpc ≤ apc < epc .

Because we know that this capability is safe to share, from the assumption of the FTLR,
we get ∃wpc . apc 7→ wpc ∗ V(wpc)

apc
. By opening the invariant apc , we get a word wpc , the

1The corollary is slightly different from the original one in Cerise. Further discussion in Section 7.2.
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points-to resource, and that wpc is safe to share. We recall that we ought to close the invariant
after one execution step.

We assume that wpc is an integer — if it were a capability, it would be trivially safe — and
we proceed by case analysis over decode(wpc).

Case Jmp to indirect sentry We take a look at the case decode(wpc) = jmp r, when r
is not pc. From the assumption over the register maps regs, we know that it exists a word
wr such that r Z⇒ wr and V(wr). We proceed by case analysis over wr, and focus on the case
wr = (ie, b, e, a) with b ≤ a < (a+1) < e, i.e., the case where wr is an in-bounds indirect sentry.
By definition of V(ie, b, e, a) and because it is in-bounds, we get ∃w1. a 7→ w1 ∗ P1(w1)

a
and

∃w2. (a+ 1) 7→ w2 ∗ P2(w2)
(a+1)

for some persistent predicates P1 and P2, and the continua-
tion predicate.

The next step of the proof should be to apply the rule Jmp-IE, but the points-to resources
necessary to apply the rule are in the invariants named a and a + 1. There are corner cases
that need to be considered in order to open the invariants: apc can be the address of the code
word of the indirect sentry being jumped to, or the address of the data word. In other words,
we need to consider the cases where the PCC overlaps with the indirect sentry. From a strictly
technical point of view, because the invariant named apc is already opened, and because it is
not possible to open two invariant with the same name twice, we need to consider the case with
a = apc and the case with a+ 1 = apc . Each case follows a similar approach:

1. Open the invariants a and a+ 1 that are not opened yet (i.e., that are not apc).

2. Use the rule Jmp-IE to update the resources of the machine.

3. Close all the invariants previously opened.

4. Terminate the proof by showing that the machine executes safely and completely.

We consider the expected case first, and then the two corner cases (where a or a + 1 clash
with apc).

jmp ri

data word

pc Z⇒ (ppc , bpc , epc , apc) ri Z⇒ (ie, b, e, a)

(a) The PCC and the indirect sentry overlap: the jmp instruction is stored at the place of the code word.

code word

jmp ri

pc Z⇒ (ppc , bpc , epc , apc) ri Z⇒ (ie, b, e, a)

(b) The PCC and the indirect sentry overlap: the jmp instruction is stored at the place of the data word.

Figure 10: The corner cases of the jmp instruction

• In the case with no overlap, addresses a and (a + 1) contain words w1 and w2 such that
P1(w1) and P2(w2) hold for some P1 and P2. After the jump, pc and idc respectively
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contain w1 and w2. Because we persistently know P1(w1) and P2(w2), the continuation
predicate states EG(w1, w2), which means that the machine executes completely and safely
from this machine state.

• In the case where apc is the address a, then this address contains the encoding of a jmp

instruction, which is an integer z. Moreover, (a+1) contains a word w2 such that P2(w2)
holds, for some P2. Figure 10a illustrates this case. After the jump, pc contains the
aforementioned integer z and idc contains w2. As the pc register contains an integer, the
machine safely and completely execute trivially from this machine state, because the next
cycle will fail.

• In the case where apc is the address (a + 1), then this address contains the encoding of
a jmp instruction, which is an integer. Moreover, a contains a word w1 such that P1(w1)
holds, for a certain P1. Figure 10b illustrates this case. After the jump, pc contains
w1, and idc contains the aforementioned integer. Because we persistently know P1(w1)
and is int(w2), the continuation predicate states EG(w1, w2). It means that the machine
executes completely and safely from this machine state.

The disjunction for the data word w2 in the continuation, P2(w2) ∨ is int(w2), enables the
last corner case 10b to continue after the jump. We discuss in Section 7.2 possible solutions to
make the last corner case to work without the disjunction with is int(w2 ).

Case restrict The case of the restrict instruction relies on the safe-to-share-monotonicity
lemma 1 below, which roughly states that if a capability (p, b, e, a) is safe-to-share, then re-
stricting its permission p to a less permissive p′ ≼ p preserves the safe-to-share property.

Lemma 1 (Safe-to-share monotonicity) Let p, p′ be capability permissions such that p ̸= e,
p ̸= ie, and p′ ≼ p. Let b, e, and a be addresses, and let widc be a safe-to-share word V(widc).
Further assume ▷IH, i.e., that the FTLR holds later (in the sense of ▷). If V(p, b, e, a), then
V(p′, b, e, a).

We sketch the proof for the case p = ro and p′ = ie. We assume V(ro, b, e, a) and need
to show V(ie, b, e, a). By definition of safe-to-share for an indirect sentry, we assume that
b ≤ a < (a+ 1) < e, and we need to show that there exists two persistent propositions P1 and
P2, such that ∃w1. a 7→ w1 ∗ P1(w1) and ∃w2. (a+ 1) 7→ w2 ∗ P2(w2) , and the continuation

∀w1, w2. ▷� (P1(w1) ∗ (P2(w2) ∨ is int(w2)) −∗ EG(w1, w2))

By definition of V(ro, b, e, a), we get P1 and P2, as well as the invariants. It only remains to show
the continuation. Let w1 and w2 be machine words such that P1(w1) and (P2(w2)∨ is int(w2)).
The continuation is under a persistency modality �, which means that it can only rely on
persistent resources. The continuation is also under a later modality ▷, which mean that we
can strip the later from the induction hypothesis IH. Moreover, we also know V(w1) and V(w2),
because, is int(w2) −∗ V(w2) and, V(ro,−,−,−) ensures that P1(w1) −∗ V(w1) and P2(w2) −∗
V(w2).

Because we have V(w1) and V(w2), the induction hypothesis IH gives us EG(w1, w2), which
is what we wanted to prove.

16



5 Case Studies

In this section, we illustrate that indirect sentries can be used to create closures that can be
shared with unknown code. We illustrate that the logical relation enforces local state encapsu-
lation. We present two cases: a module that increments a private counter at each call; and a
secure heap-based calling convention that do not require any trampoline code.

5.1 Counter closure

We illustrate the use of indirect sentries to implement an encapsulated closure with a private
counter, with a single entry point to code that increments the value of the counter. This
is a variation of the counter module of Cerise [7, §6.2], where we use the indirect sentry to
separate the code and the data (whereas their implementation mixed them, which we argued
is undesirable, see 1). With this example, we illustrate how the indirect sentry can be used to
create a closure that encapsulates some private state, yet can be safely shared with unknown,
adversarial code.

Program Figure 11 shows the code of the counter closure. The initial memory of the machine
is split in two parts: the code part in the region [init, end) and the data part in the region
[data, data end). At the initial state of the machine, the program initializes (lines 4 – 23 ) the
closure by storing the code capability at the address data, storing the data capability at the
address data+1, and creates the indirect sentry before jumping to an adversary.

At the invocation of the indirect sentry, the program (lines 29–34 ) fetches the value of the
counter, increments its value by one, and jumps back to the caller. The initial value of the
counter is 0.

In order to show that the state of the closure is indeed private, it suffices to show that the
machine can completely and safely execute, under the invariant that the value of the counter is
always non-negative. The fact that the counter always remains non-negative witnesses the fact
that an adversary cannot change the value of the counter arbitrarily.

Specification The crucial part of the specification is to prove that the indirect sentry of
the counter closure is safe-to-share under the invariant that the counter value is always non-
negative (1). This invariant captures Local State Encapsulation, because an adversary with the
write-access to the counter could change its value arbitrarily (see [7, §6.2]).

∃n. counter 7→ n ∗ ⌈0 ≤ n⌉ (1) ∗ [code, end) 7→ counter instrs (2)

∗ data 7→ (rx, init, end, code) (3) ∗ data+ 1 7→ (rw, data, data end, counter) (4)

⊢ V(ie, data, data end, data)

The other invariants ((2), (3), (4)) are allocated along the proof of the specification of the full
program: the region of memory [code, end) contains the instructions of the increment program
(2), the address data contains the code capability of the indirect sentry (3), and the address
data+ 1 contains the data capability of the indirect sentry (4).

Proof By definition of V(ie, data, data end, data), it suffices to prove that there exists two
persistent predicates P1 and P2 such that

1. ∃w1. data 7→ w1 ∗ P1(w1)

2. ∃w2. data+ 1 7→ w2 ∗ P2(w2)

17



1 ; initially, PC = (RX, init, end, init)

2 ; IDC = (RW, data, data_end, data)

3 ; r31 = (unknown) capability to the context

4 init:

5 ; 1. store the code capability

6 mov r1 PC ; r1 = (RX, init, end, init)

7 lea r1 [code-init] ; r1 = (RX, init, end, code)

8 store IDC r1 ; mem[data] <- (RX, init, end, code)

9
10 ; 2. store the data capability

11 mov r1 IDC ; r1 = (RW, data, data_end, data)

12 lea r1 [data-counter] ; r1 = (RW, data, data_end, counter)

13 lea IDC 1 ; IDC = (RW, data, data_end, data+1)

14 store IDC r1 ; mem[data+1] <- (RW, data, data_end, counter)

15
16 ; 3. prepare the IE

17 lea IDC (-1) ; IDC = (RW, data, data_end, data)

18 restrict IDC IE ; IDC = (IE, data, data_end, data)

19
20 ; 4. jump to unknown code

21 mov r1 0 ; r1 = 0

22 jmp r31 ; jump to unknown code: we only give it access

23 ; to an indirect sentry capability pointing to ’code’

24
25 ; when ’code’ gets executed from the IE capability,

26 ; PC = (RX, init, end, code)

27 ; IDC = (RW, data, data_end, counter)

28 ; r31 = (unknown) return capability to the continuation

29 code:

30 load r1 IDC ; r1 = <counter value>

31 add r1 r1 1 ; r1 = <counter value> + 1

32 store IDC r1 ; mem[counter] <- <counter value> + 1

33 mov IDC 0 ; IDC = 0

34 jmp r31 ; return to unknown code

35 end:

36
37 data:

38 0xFFFF, ; will be overwritten with (RX, init, end, code), i.e.

39 ; a read-execute capability to the code

40 0xFFFF, ; will be overwritten with (RW, data, data_end, counter), i.e.

41 ; a read-write capability to the counter value

42 counter:

43 0 ; our private data: the current value of the counter

44 data_end:

Figure 11: Program implementing a secure counter with indirect sentries

3. ∀w1, w2. ▷� (P1(w1) ∗ (P2(w2) ∨ is int(w2)) −∗ EG(w1, w2))

We choose P1(w) ≜ ⌈w = (rx, init, end, code)⌉ and P2(w) ≜ ⌈w = (rw, data, data end, counter)⌉.
Using (3) and (4), we can prove the two first invariants, and it remains to prove the continuation.
To do so, we show that the increment program is safe to share, (1) when the data word w2 is the
expected capability (rw, data, data end, counter), and (2) when the data word w2 is an integer.
Because the increment program assumes that the data word is a capability, the case (2) where the
data word is an integer trivially fails at the first load instruction, and is thus safe to execute. For
the case (1), where the data word contains the expected capability (rw, data, data end, counter),
it suffices to show that the program does not break the invariant ∃n, counter 7→ n ∗ ⌈0 ≤ n⌉ ,
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which holds because the program only increments the counter value.

Conclusion This counter closure example illustrates how to use indirect sentry to create an
encapsutaled closure (i.e., with a private state), and to safely share an entry point to this
closure. In the next example, we show how to use the indirect sentries to create a secure calling
convention.

5.2 Heap-based calling convention

We present a secure calling convention using indirect sentries that enforces Local State En-
capsulation, i.e., a callee cannot access the local variables of the closure. This calling convention
is inspired by function calls in high-level language, such as the calling convention used to extend
Standard ML with call/cc [2]. Our calling convention is an adaptation of Vanilla Cerise’s calling
convention [7, §7.3]. We show that this calling convention guarantees the encapsulation of local
state, even when the callee (or caller) is unknown, untrusted code. In particular, this guar-
antee does not rely on the callee using the same calling convention. Whereas Cerise’s calling
convention creates a return pointer with an entry capability intertwining code and data, our
calling convention uses an indirect sentry. As a consequence, our calling convention does not
need “trampoline code” to restore the local state.

Figure 12 shows the code of the call routine. We assume that we have a trusted malloc

macro. The macro is trusted, in the sense that we have a specification, that proves the macro to
only allocate an available region of memory. Its code and specification are described in Cerise [7,
§7.1]. Before jumping to the target, the call sub-routine stores the local state and prepares
the return pointer as follows:

1. Dynamically allocate some heap memory region [l, lend ) with malloc, and store the local
state. (lines 9 – 11)

2. Dynamically allocate some heap memory region [bie, eie) with malloc, and store the code
and the data capabilities. The code capability is a capability that points to the instruction
following the call. The data capability is the allocated capability pointing to the local
state (rwx, l, lend , l). (lines 12 – 13)

3. Create an indirect sentry pointing to the code and data capabilities (ie, bie, eie, bie). This
indirect sentry is the return pointer to the caller, passed to the callee. (lines 15 – 21)

4. Clear all registers except those in params. (line 22)

5. Jump to target .(line 23)

After the jump, the callee has access to the parameters and the return pointer, but does not
have access to the local state. When the callee jumps to the return pointer, the jump restores
the code capability in the pc register, and the data capability pointing to the local state in the
idc register. Finally, after the jump, the caller can restore the local state.

6. Restore the local state (RESTORE LOCALS idc locals).

The specification relies on the specification of the malloc. The mallocInv invariant roughly
describes that [bm, em) contains the code of the malloc routine, and the memory pool from which
the new memory is allocated, making sure it only allocates free memory. The precondition of
the call describes the resources required before the execution of the routine. The pc points to
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1 ; initially, PC = (RWX, code, end, a)

2 ; target = register containing the address to jump to

3 ; locals, params = lists of register names

4 code:

5 ...

6 a:

7 MALLOC (len locals) ; 1. macro: allocate and store local state

8 STORE_LOCALS r1 locals

9 mov r6 r1

10 MALLOC 2 ; 2. macro: allocate region for code/data of indirect sentry

11 mov r31 r1

12 x:

13 mov r1 pc ; prepare and store the continuation

14 lea r1 [cont - x]

15 store r31 r1

16 lea r31 1 ; store the capability to locals

17 store r31 r6

18 lea r31 -1 ; 3. create the return capability

19 restrict r31 IE

20 RCLEAR RegName\({PC,r31,target} ∪ params) ; 4. clear all registers except parameters

21 jmp target ; 5. jump to target

22 cont:

23 RESTORE_LOCALS idc locals ; 6. reinstate local state

24 ...

25 data:

26 (RO, table, end, table) ; environment table

27 table: ; linking table

28 (E, bm, em, bm) ; entry point to the malloc subroutine

29 ... ; possibly other routines

30 end:

Figure 12: Our heap-based calling convention using indirect sentries.
We use Coq as an assembler, so macros (in all caps) take arguments which are Coq terms. The
macro parameters locals and params are instantiated with lists of registers. The linking table
contains a list of trusted routines, including the one called by the MALLOC macro.

the start of the instructions of the call. Via the PC capability, the program has access to a
linking table (ro, table, end, table) which includes the entry capability to the malloc routine.

The postcondition of the specification stops at the last instruction, before the jump (step 5,
line 23). After the call, we know that there exists some dynamically allocated addresses bie and
eie for the indirection of the indirect sentry, and l and lend for storing the locals. The locals lws
are indeed stored in the memory in [l, lend ). The register r31 contains the return capability, as
an indirect sentry. Every register, except the parameters params, the target , and r31, has been
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cleared.

mallocInv(bm, em)

⊢


(p, code, end, a);

[a, cont) 7→ call instrs ∗
data 7→ (ro, table, end, table) ∗ table 7→ (e, bm, em, bm) ∗
params Z⇒ pws ∗ locals Z⇒ lws ∗ target Z⇒ wadv ∗∗ (r,v)∈reg

r/∈{pc,target}
r ̸∈params ∪ locals

r Z⇒ v


⇝


(p, code, end, cont− 1);

∃bie , eie , l , lend , reg ′.
r31 Z⇒ (ie, bie , eie , bie) ∗
data 7→ (ro, table, end, table) ∗ table 7→ (e, bm, em, bm) ∗
params Z⇒ pws ∗ target Z⇒ wadv ∗ [l , lend ) 7→ lws ∗
[bie , eie) 7→ [(p, code, end, cont); (rwx, l , lend , lend )] ∗∗

(r,v)∈reg ′
r/∈{pc,target ,r31}

r ̸∈params

r Z⇒ v


Because wadv could be anything, the specification after the jump is left to the user. Usually,

wadv is safe-to-share, and it suffices to use the Corollary 1 to continue. As such, it requires little
additional proof effort in addition to our calling convention.

We highlight that our calling convention does not need a trampoline code that intertwine
code and data, as explained in §1. Because of the return pointer is an indirect sentry, the
machine restores both the code and the local state during the jump back to the caller. In the
case of a heap-based calling convention, the gain is negligible. However, for stack-based calling
convention, the trampoline code has to be stored in the stack, which forces the stack to be
executable. Using a calling convention with indirect sentries allows to remove this trampoline
code. We hope that secure stack-based calling conventions ensuring Well-Bracketed Control
Flow [14, 15, 8, 6] can also be extended with indirect sentries, avoiding the trampoline code in
the stack. We leave this extension as future work (see §7).

5.3 Sharing a sub-buffer

We show that our calling convention safely encapsulates local state in a concrete example.
Moreover, we show that the logical relation is complete enough to reason about the interaction
with an adversary. The program stores a private value in a buffer, shares the remaining,
public part of the buffer with an adversary using the calling convention, and checks whether
the private value has been modified after the call. We are only interested in the integrity of the
private value, not in the confidentiality. More precisely, the full program in Figure 13 does the
following:

1. Dynamically allocate a buffer (rwx, bmem , emem , bmem) of size N using malloc (lines 1
to 5)

2. Store a private data in the buffer, at an offset 0 ≤ offset < N (lines 7 – 8)

3. Derive two capabilities, with aoff ≜ bmem + offset + 1:
• a capability pointing to the public part of the buffer, Cpub = (rwx, aoff , emem , aoff )
(lines 10 – 13)

• a capability pointing to the private part of the buffer, Cpriv = (rwx, bmem , aoff , bmem)
(lines 16 – 19)
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1 code:

2 MALLOC size ; 1. allocate the buffer

3 mov r7 r1

4 mov r1 0

5 mov r7 r8

6
7 lea r7 secret_off

8 store r7 secret_val ; 2. store the secret data

9
10 getb r2 r7

11 gete r3 r7

12 add r2 (secret_off + 1)

13 subseg r7 r2 r3 ; 3.1. derive public capability C_p

14
15 ; secret

16 getb r2 r8

17 getb r3 r8

18 add r3 (secret_off + 1)

19 subseg r8 r2 r3 ; 3.2. derive secret capability C_s

20
21 CALL r30 [r8] [r7] ; 4. call the adversary

22 RESTORE_LOCALS idc [r8] ; 5.1. restore the local state

23
24 lea r8 secret_off

25 load r4 r8

26 mov r5 secret_val

27 ASSERT r4 r5 ; 5.2. assert unchanged secret value

28
29 ; halts

30 halt

31 a:

Figure 13: Program sharing a sub-buffer using the calling convention

4. Call the adversary using the calling convention. The call encapsulates the private buffer
Cpriv, and pass the public buffer Cpub as a parameter to the adversary. (line 21)

5. After the call, restore the local state, i.e. the private buffer, is restored, and dynamically
assert the integrity of the private value. (lines 22 – 27)

Because the buffer is dynamically allocated, the address of the private data is not statically
known, and so we cannot directly state that it does not change. We solve this with a little
bit of indirection, following the same methodology as Cerise, by using an assert macro. We
show that the assert never fails throughout the whole execution, indicating that the adversary
cannot modify the private value, and that the calling convention enforces LSE. Internally, the
dynamic assert macro changes a flag if the assertion fails. This flag is located at a statically
known address. By using an invariant stating that the value of the flag never changes, we make
sure that the assertion does not fail.

A variant of this example was already mechanised [12], which itself is a variant of the
subbuffer case study in Cerise [7, §6.1] with the use of the dynamic allocation [7, §7.1], the
dynamic assertion [7, §7.2] and the secure calling convention [7, §7.3] with a trampoline code.
With our example, we aim to show that the same security properties hold using our calling
convention, and that we can specify similar programs. In the rest of the section, we highlight
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the key parts where our proof differs from that of [12].

The specification of the program states that, if the pc points at the first instruction of the
program, and if the linking table contains the entry points for malloc and assert, the invariants
bellow for the malloc and the assert (which talks about the assertion flag) will hold throughout
the entire execution:

mallocInv(bm, em) ∗ assertInv(ba, ea)

⊢

(p, code, end, code);

[code, data) 7→ subbuffer instrs ∗
data 7→ (ro, table, end, table)∗
[table, end) 7→ [(e, bm, em, bm); (e, ba, ea, ba)] ∗∗(r,w)∈reg,r ̸=pc r Z⇒ w ∗ V(w)

⇝ •

The specification of the example can be split in 3 main parts: (1) the specification of the
code before the call macro (lines 1–21 ), (2) the specification of the call macro, before the
final jump (implicit in line 21 ), and (3) the specification following the jump (lines 21–31 ). The
first part (1) is only known code, and requires basic usage of the program logic. The second
part (2) uses the specification of the call macro, which stops at the pc pointing to the jump
instruction. The third part (3) is the key part of the proof, as it requires to use the FTLR to
reason with the unknown code.

In the remainder of this section, we focus on the second and third part of the proof. The
following is a specification starting after the first part. We use the indicator (X) to describe the
resources in the text. The blue color in the postcondition highlights the changes between the
precondition and the postcondition.

After the execution of the first part of the program, the pc register (1) points at the beginning
of the call macro (line 21 in Figure 13). The dynamically allocated buffer [bmem , emem) can
be split in two parts: the private buffer [bmem , aoff ) (4), with aoff − 1 containing the private
privateval , and the public buffer [aoff , emem) (5), which contains only zeroes. The register r7 (6)

contains a capability pointing to the public part of the buffer. The register r8 (7) contains a
capability pointing to the private part of the buffer. The register r30 (8) contains the adversary
pointer, that is safe to share (9).
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mallocInv(bm, em) ∗ assertInv(ba, ea)

⊢


(p, code, end, a)(1);

∃bmem , emem , aoff .
[a, cont) 7→ call instrs(2) ∗ · · · (3) ∗
[bmem , aoff ) 7→ [0; · · · ; privateval ](4) ∗
[aoff , emem) 7→ [0; · · · ; 0](5) ∗
r7 Z⇒ (rwx, aoff , emem , aoff )(6)∗
r8 Z⇒ (rwx, bmem , aoff , bmem)(7)∗
r30 Z⇒ wadv (8) ∗ V(wadv )(9)
∗ · · · (10)


⇝



(p, code, end, cont− 1)(11);

∃bmem , emem , aoff , bie , eie , l , lend , reg
′.

[a, cont) 7→ call instrs(2) ∗ · · · (3) ∗
[bmem , aoff ) 7→ [0; · · · ; privateval ](4) ∗
[aoff , emem) 7→ [0; · · · ; 0](5) ∗
[l , lend ) 7→ [(rwx, bmem , aoff , bmem)](12) ∗
[bie , eie) 7→ [(p, code, end, cont); (rwx, l , lend , lend )](13) ∗
r7 Z⇒ (rwx, aoff , emem , aoff )(6)∗
r8 Z⇒ 0(14)∗
r30 Z⇒ wadv (8) ∗ V(wadv )(9) ∗
r31 Z⇒ (ie, bie , eie , bie)(15) ∗
· · · (10)


The postcondition of the call macro stops when the pc register (11) points at the final jump

of the macros. For the sake of readability, the ellipsis in the pre and postcondition hide the
non relevant resources. They corresponds to the memory points-to predicates of the first and
third parts of the code (3), the memory points-to predicates of the linking table (3), and all the
other register points-to predicates containing safe-to-share words (10). The reader can find the
full specification in Appendix B

To end the proof of the full specification, we can use the Corollary 1, as the next executed
instruction is a jmp r. To do so, we need to show that the content of every register is safe-to-
share. In particular, we need to show that the content of r7 and r31 is safe to share.

For r7 (6), proving that the public capability Cpub ≜ (rwx, bmem , aoff , bmem) is safe to share
reduces to showing that its content is safe to share. Here, the buffer [aoff , emem) (5) contains
only zeroes, which are trivially safe to share.

For r31 (15), we need to show that (ie, bie , eie , bie) is safe to share. By definition of V(ie,−,−,−),
and because bie ≤ bie < bie + 1 < eie , we get to choose the predicates P1 and P2 such that
l 7→ w1 ∗ P1(w1) and (l + 1) 7→ w2 ∗ P2(w2). We choose P1 ≜ λw. ⌈w = (p, code, end, cont)⌉ and
P2 ≜ λw. ⌈w = (rwx, l , lend , lend )⌉. Then, we allocate the invariant for the addresses bie and
(bie + 1), and it remains to show the continuation predicate.

To apply the continuation, we first need to introduce the �-modality, which means that the
continuation can only rely on persistent properties. Intuitively, the reason of the �-modality
exhibits the fact that, the indirect sentry can be called at any time, in any content, and then
its specification after the jump can only rely on predicate that always holds (i.e., that are
persistent). As such, we allocate an invariant containing the last part of the code. Then,
the continuation starts with pc Z⇒ (p, code, end, cont), i.e., pointing at the first instruction of
restore local. The register idc Z⇒ w2 for a certain w2 such that, either w2 = (rwx, l , lend , lend )
or w2 ∈ Z. All the other registers contain safe to share values. The case w2 = (rwx, l , lend , lend )
means that the local state was correctly restored in the idc register. It is what the restore local

expects, and we the skip the rest of the specification. The case w2 ∈ Z is an artefact of the
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logical relation. After a few instructions, the macro restore local attempts to execute a
Load r idc, which fails because idc contains an integer. Because failing is a safe behaviour, this
concludes this case of the proof.

6 Related Work

6.1 Capability monotonicity

Capability monotonicity has been proven for CHERI [11], stating that the authority of the
machine can only decrease, until it reaches a controlled domain transition. Morello has indirect
sentries, and Bauereiss et al. [4] take them into account in their monotonicity theorem as follows:

“This guarantees that software cannot escalate its privileges by forging capabilities
that are not reachable from the starting state. Non-monotonic changes in the set
of reachable capabilities are limited to the specific mechanisms defined above for
transferring control to another security domain, i.e. ISA exceptions or sealed capa-
bility invocations, installing capabilities belonging to the new domain in the PCC
(and possibly IDC) register. The monotonicity guarantee stops before such a do-
main transition happens. Sealed capability invocations within a security domain are
monotonic, however; the theorem does cover capability invocation instructions, e.g.
branch instructions taking sentry capabilities, if the unsealed invoked capability is
reachable in the current security domain.”

Whereas capability monotonicity stops at domain transition, our logical relation 4 intends to
capture capability safety, and allows us to reason even after such a domain transition. However,
Cerise is a simplified CHERI-like machine. We do not have to deal with the concrete ISA, which
makes the proofs more tractable.

6.2 Points-to-PCC indirect sentry capabilities

The CHERI ISA-V9 [17] proposes two different implementations for the indirect sentries: points-
to-pair and points-to-PCC. In this work, we explored formally how to reason about programs
with the points-to-pair implementation.

A points-to-PCC indirect sentry points to the code capability, and ranges over the data.
Upon invocation, the machine unseals the indirect sentry with the permission rw, installs the
code capability in the pc register, and moves the current address of the unsealed indirect sentry
to the next address. These three actions are done during one instruction. Figure 14 shows a
representation of an indirect sentry with the points-to-PCC flavour.

It would be interesting to explore formally if the security properties would also hold for this
flavor of indirect sentries. In particular, in this setup, the data word is always a capability, as
it corresponds to the unsealed indirect sentry. Therefore, it could avoid the disjunction for the
continuation of the logical relation for ie-cap. We leave such formalization as future work.

6.3 Implementing encapsulated closures with sentry capabilities

With sentry capabilities (e permission), a closure needs to embed both the code and the data
contiguously. Moreover, it requires some trampoline code at the beginning of the closure to
fetch the data and store it in the data register. As discussed in Section 1, trampoline code is
undesirable and breaks the principle of least privilege. Figure 15 shows the result of the software
implementation for creating closures using sentry capabilities.
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Figure 14: Indirect Sentry capability — Points-to-PCC
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Figure 15: Sentry capability — Closure

Usually, the code (executable) segment and the data (writable) segment are kept separate
(for caching and protection). This implementation requires the code segment to be writable (or
the data segment to be executable), which not only breaks the old conventions, but also forces
the authority of the code segment (respectively the data segment) to be more important than
it could otherwise be. Another downside of this implementation is that, storing code requires
a large number of instructions, which makes creation of closure less efficient than setting up
indirect sentries.

6.4 Implementing encapsulated closures with sealed pairs

Seal capabilities offers are another way to create closures in capability machines. Sealing allows
to mark capability as non-mutable and non-dereferencable. Sealed capability are sealed using
an otype, which is controlled by sealing capabilities. Seals offer a form of data encapsulation.
In CHERI, their main purpose is to offer a way to link a pair of code and data capabilities, by
creating sealed pairs. Each closure requires a unique otype. It also comes with an additional
instruction Invoke, which takes two sealed capabilities as arguments: the sealed code capability
and the sealed data capability. Both capability needs to be sealed with the same otype for being
invoked.
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From a formal point of view, invocation of sealed pairs is challenging. CHERI has a permis-
sion cinvoke for limiting the sealed capabilities that can be invoked, which, ease the formal
reasoning. But it still requires complicated bookkeeping for all otypes involved, and requires
strong engineering requirement [15]. Moreover, another downside of this approach is the limited
number of otypes: 4 bits in 64-bits capabilities, and 18 bits in 128-bits capabilities. Because
the typical use of otypes is to define the boundaries of domains (e.g. different libraries linked
together), this limitation can be annoying. For instance, CHERIoT [1] has a very limited num-
ber of otypes. On the other hand, it is possible to create as many Indirect Sentry capabilities
as we wish.

As already drawn out previously, Indirect Sentry capabilities are less expressive than Invoke

of sealed pairs: the closure made with Indirect Sentry capability are tied to their unique context.
Indirect sentries are less expressive, but they are easier to formally reason about. As we saw
in Section 4, the logical relation for indirect sentries is very similar to the logical relation for
regular entries.

6.5 Cerise’s flavours

In the effort of formal studying security guarantees of CHERI-like machines, several work have
been done.

Stack safety [14, 15, 8, 6] focus on efficient and secure calling convention, and enforce stack
safety properties such as Local State Encapsulation and Well Bracketed Control Flow in the
presence of an explicit stack. [8, 6] are fully mechanised in the Coq proof assistant. [14] uses
local capabilities and implements closures with entry capabilities. [15] study the experimental
linear capabilities and implements closures with sealed pair. [8] uses local capabilities, study
experimental uninitialised capabilities and implements closures with entry capabilities. [6] uses
local capabilities and the experimental uninitialised capabilities, study experimental directed
capabilities, and implements closures with entry capabilities. Our work focuses on Local State
Encapsulation only, and does not support local capabilities. However, we have good hope we
can extend the aforementioned work with indirect sentries similarly.

Data abstraction ‘Vanilla’ Cerise [7] is a fully mechanised mini-CHERI machine that uses
entry capabilities to implement closures. [16] extends Cerise with sealed capabilities, which
enables the study of data abstraction. They use entry capabilities to implement closures, as
they do not support invocation of sealed pairs.

7 Future Work

7.1 Secure Stack-based Calling Convention

In this section, we propose an extension of this work for an efficient and secure stack-based
calling convention. In particular, we propose to revisit the work of Georges et al. [6], to create
the return pointer with an indirect sentries instead of the regular sentry, which allows to remove
the trampoline code from the stack. The formalization and verification of the calling convention
is left as future work.

Monotone Cerise The Monotone Cerise machine in Georges et al. [6] extends Vanilla Cerise
in a different direction from ours, focused on stack safety. It implements CHERI’s locality bit
used to separate stack-only capabilities from normal, so-called global capabilities, as well as two
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experimental kinds of capabilities related to stack management: uninitialized capabilities [8]
and directed capabilities [6].

In more detail, the locality bit is used as a temporary mechanism, and restrict the way a
capability can be stored. If the locality is set to global, the capability can be stored anywhere.
If the locality is set to local, the capability can only be stored in the registers, or via a capability
with the write-local (wl) permission. In the model, the stack capability is the only capability
with wl permission. local capabilities prevent an adversary to store stack capabilities in its
private memory.

A capability is an uninitialized capability if it has the u permission, where π is the regular
permissions. The semantics of uπ is that the capability (uπ, g, b, e, a) has the π permission over
the range [b, a) and π \ {r,x} over the [a, e). The only way to move the bound a to higher
addresses is to overwrite what was previously written at address a. Uninitialized capabilities
prevent an adversary from storing stack capabilities in the stack in between two calls.

A capability is said directed if it has the directed locality. The semantics of directed is
that the capability (p,directed, b, e, a) cannot be stored in memory at higher addresses than
the address it currently points-to, a. Directed capabilities means that the callee does not need
to not clear its stack frame before returning to the caller.

Secure and Efficient Calling Convention Using the aforementioned features, Georges et
al. [6] define a secure and efficient calling convention, ensuring local state encapsulation (LSE)
and well-bracketed control flow (WBCF), and does not require any stack clearing. However,
the calling convention uses entry capabilities as return pointers, which requires the trampoline
code to be in the stack. As already discussed, trampoline code in the stack requires the stack
to be executable, which breaks the principle of least privilege. As previously shown, trampoline
code can be safely removed from the stack by using indirect sentries.

Figure 16 shows the state of the stack upon the jump to the next function in Monotone
Cerise. The stack grows from low addresses (at the bottom) to high addresses (at the top).
The key aspect is the activation record in the stack. For more explanation about the calling
convention, see [6]. The activation record is a small trampoline code (4 instructions) that
recovers the previous stack frame capability and jumps to the call site of the callee. Storing the
trampoline code in the stack is unavoidable, because (1) the return pointer given to the caller
needs to be a directed capability, in order to ensure that the caller does not store the pointer
in its private memory; and (2) the caller needs to store its current stack frame capability in the
closure of the return pointer, and the only memory region where the the stack capability can
be stored is the stack itself.

The downside of this calling convention is that the stack needs to be executable, which does
not really respect the principle of least privilege, as explained in §1.

Calling Convention with Indirect Sentries We propose a calling convention that uses
indirect sentries instead of the regular entry capabilities, which thus makes it possible to im-
plement callbacks without using trampoline code, and therefore means that the stack does not
need to be made executable.

Figure 17 shows the state of the stack upon the jump to the next function, for our calling
convention using indirect sentries. As opposed to calling conventions using regular entries,
recovering the stack pointer of the caller at the callback does not require any trampoline code,
as the semantic of the indirect sentries handles it.

In more details, the calling convention does the following:

1. Pushes the current environment, i.e., the content of the register file, in the stack.
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Figure 16: Stack-based Calling Convention with Entry capability and trampoline code. The
stack grows bottom up.

2. Pushes the callback capability (PCC after the call macro) and the current stack capability
on the stack. It corresponds to the pair that will be used for the indirect sentry.

3. Pushes the arguments of the call on the stack.

4. Creates and pushes an indirect sentry for the return capability.

5. Restricts the stack pointer to the new frame.

6. Clears the registers and jumps to the callee.

We expect the new calling convention to enforce the WBCF and the LSE security properties,
but leave the proof of this for future work.

7.2 Technical Improvement

This section intends to point out some technical improvements that could be made on Cerise
with Indirect Sentries, and informally propose possible directions to investigate in order to
achieve those improvements. We leave such technical improvements as future work.

Jump to unknown word The Corollary 1 is slightly different from the original one in
Cerise [7, §5.2]. Our specification start before executing the jump, whereas the original one
starts after the execution of the jump, giving a form of continuation after the jump of a macro.
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Figure 17: Stack-based calling convention using indirect sentry capabilities to avoid trampoline
code. The stack grows from the bottom up.

Previously, the corollary simulated the jump. The main point of the corollary is to be used as
a continuation point after jumping to a macro.

The reason of this difference is that, jumping to an indirect sentry requires the points-to
resources of the indirection. In particular, to be able to jump to an arbitrary word w, the
user needs to justifies that he owns the points-to resources. Moreover, the words in pc and idc
depends on the content of indirection. However, the points-to predicates are only known after
opening the invariant of V(w), in case it is an indirect sentry. In the case of specifying a macro
with multiple instructions, the invariant cannot be opened before, and then cannot justify that
it owns the points-to resources.

Our version of the corollary is an issue because it loses its modularity. First, Corollary 1
only states how to jump with the jmp instruction. We could easily define its counterpart for
the jnz instruction, but it implies some duplication. Second, there is a lose of modularity when
specifying a macro. Instead of specifying the postcondition of a macro to be “the state after
the jump”, we need to specify the postcondition to be “the state before the jump”. Not only it
usually require an heavy manipulation of the resources when using the specification, but it also
clutters the specification of macros with different exit point. Finally, when specifying macros,
we don’t know yet whether the jumping pointer is known by the user of the macro or not.
Put another way, it is the responsibility of the user of the specification to justify the potentially
necessary point-to resources, either if he directly owns the resources (in case the word is known),
or if he only gets them from an invariant (e.g., in case the word is unknown).

A direction to explore in order to recover some modularity is to define an HOCAP-style
specification [5, §13].
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Improvement Definition Logical Relation The logical relation for indirect sentries in
Figure 9 defines the continuation predicate with a disjunction is int over the data word. The
proof of the corner case of the FTLR 4.3 highlights the technical reason of this is int trick.
Our study shows that this definition is complete enough to prove interesting use cases. But
the consequences of this definition are that the user of the logical relation needs to prove
two specifications of a closure: one with the expected P2(w2), and one with the unexpected
is int(w2).A

We argue that the definition could be improved further, and remove the disjunction with
is int to only keep the expected predicate P2. If the adversary has some control over the address
of the data word, it suggests that the adversary created the indirect sentry. In particular, it
means that the adversary also has some control over the address of the code word, which has to
be safe to share. However, our current logical relation forgets the link between the code word
and the data word. A first direction to explore would be to find a way to keep track of the link
between the code word and the data word.

The technical reason of the is int trick highlight that, the disjunction between the address
of the pc capability and the indirect sentry we are jumping to, inherits from the program logic
rules, which also do the distinction in the resources of the pre- and postcondition. Another
direction to investigate would be to define the specifications in an alternative way, that does
not require to distinguish the different cases to write the rules of the program logic

31



References

[1] Saar Amar et al. CHERIoT: Rethinking security for low-cost embedded systems. Tech.
rep. MSR-TR-2023-6. Microsoft, Feb. 2023. url: https://www.microsoft.com/en-
us/research/uploads/prod/2023/02/cheriot-63e11a4f1e629.pdf.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
isbn: 0-521-41695-7.

[3] Arm® Architecture Reference Manual Supplement Morello for A-profile Architecture.
Tech. rep., p. 1294. (Visited on 01/19/2024).

[4] Thomas Bauereiss et al. “Verified Security for the Morello Capability-enhanced Prototype
Arm Architecture”. In: Programming Languages and Systems - 31st European Symposium
on Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceed-
ings. Ed. by Ilya Sergey. Vol. 13240. Lecture Notes in Computer Science. Springer, 2022,
pp. 174–203. doi: 10.1007/978-3-030-99336-8_7. url: https://doi.org/10.1007/
978-3-030-99336-8_7.
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ExecSingle

(Running, σ) →


Jdecode(z)K(σ) if σ.reg(pc) = (p, b, e, a) ∧ b ≤ a < e ∧

p ∈ {rx,rwx} ∧ σ.mem(a) = z

(Failed, σ) otherwise

i JiK(σ) Conditions
fail (Failed, σ)
halt (Halted, σ)
mov r ρ updPC(σ[reg.r 7→ w]) w = getWord(σ, ρ)

load r1 r2 updPC(σ[reg.r1 7→ w])
σ.reg(r2) = (p, b, e, a) and w = σ.mem(a)
and b ≤ a < e and p ∈ {ro,rx,rw,rwx}

store r ρ updPC(σ[mem.a 7→ w])
σ.reg(r) = (p, b, e, a) and b ≤ a < e and
p ∈ {rw,rwx} and w = getWord(σ, ρ)

jmp r

 Executable,

σ

[
reg.pc 7→ newPc,
reg.idc 7→ newIdc

] 
if σ.reg(r) = (ie, b, e, a)
then b ≤ a < a+ 1 < e

∧ newPc = σ.mem(a)
∧ newIdc = σ.mem(a+ 1)

else newPc = updatePcPerm(σ.reg(r))
∧ newIdc = σ.reg(idc)

jnz rdst rcond


Executable,
if σ.reg(rcond) ̸= 0

then σ

[
reg.pc 7→ newPc,
reg.idc 7→ newIdc

]
else updPC(σ)


if σ.reg(rdst) = (ie, b, e, a)
then b ≤ a < a+ 1 < e

∧ newPc = σ.mem(a)
∧ newIdc = σ.mem(a+ 1)

else newPc = updatePcPerm(σ.reg(rdst))
∧ newIdc = σ.reg(idc)

restrict r ρ updPC(σ[reg.r 7→ w])
σ.reg(r) = (p, b, e, a) and
p′ = decodePerm(getWord(σ, ρ)) and p′ ≼ p
and w = (p′, b, e, a)

subseg r ρ1 ρ2 updPC(σ[reg.r 7→ w])

σ.reg(r) = (p, b, e, a) and for i ∈ {1, 2},
zi = getWord(σ, ρi) and zi ∈ Z and
b ≤ z1 < AddrMax and 0 ≤ z2 ≤ e and
p ̸= e and p ̸= ie and w = (p, z1, z2, a)

lea r ρ updPC(σ[reg.r 7→ w])
σ.reg(r) = (p, b, e, a) and z = getWord(σ, ρ)
and p ̸= e and p ̸= ie and w = (p, b, e, a+ z)

add r ρ1 ρ2 updPC(σ[reg.r 7→ z])
for i ∈ {1, 2}, zi = getWord(σ, ρi)
and zi ∈ Z and z = z1 + z2

sub r ρ1 ρ2 updPC(σ[reg.r 7→ z])
for i ∈ {1, 2}, zi = getWord(σ, ρi)
and zi ∈ Z and z = z1 − z2

lt r ρ1 ρ2 updPC(σ[reg.r 7→ z])
for i ∈ {1, 2}, zi = getWord(σ, ρi)
and zi ∈ Z and if z1 < z2 then z = 1 else z = 0

getp r1 r2 updPC(σ[reg.r1 7→ z]) σ.reg(r2) = (p, , , ) and z = encodePerm(p)

getb r1 r2 updPC(σ[reg.r1 7→ b]) σ.reg(r2) = ( , b, , )

gete r1 r2 updPC(σ[reg.r1 7→ e]) σ.reg(r2) = ( , , e, )

geta r1 r2 updPC(σ[reg.r1 7→ a]) σ.reg(r2) = ( , , , a)

isptr r1 r2 updPC(σ[reg.r1 7→ z])
if σ.reg(r2) = ( , , , )
then z = 1 else z = 0

(Failed, σ) otherwise

updPC(σ) =

{
(Running, σ[reg.pc 7→ (p, b, e, a+ 1)]) if σ.reg(pc) = (p, b, e, a)
(Failed, σ) otherwise

getWord(σ, ρ) =

{
ρ if ρ ∈ Z
σ.reg(ρ) if ρ ∈ RegName

updatePcPerm(w) =

{
(rx, b, e, a) if w = (e, b, e, a)
w otherwise

Figure 18: Operational semantics: execution of a single instruction.
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A Full Operational Semantics

B Full spec example call

mallocInv(bm, em) ∗ assertInv(ba, ea)

⊢



(p, code, end, a);

[code, a) 7→ pre call instrs ∗
[a, cont) 7→ call instrs ∗ · · · ∗
[cont, end) 7→ post call instrs ∗
data 7→ (ro, table, end, table)∗
table 7→ (e, bm, em, bm) ∗
(table+ 1) 7→ (e, ba, ea, ba) ∗
[bmem , aoff ) 7→ [0; · · · ; privateval ] ∗
[aoff , emem) 7→ [0; · · · ; 0] ∗
r7 Z⇒ (rwx, aoff , emem , aoff )∗
r30 Z⇒ wadv ∗ V(wadv ) ∗
r8 Z⇒ (rwx, bmem , aoff , bmem)∗
∗ (r,v)∈reg,

r /∈{pc,target}
r ̸∈params ∪ locals

r Z⇒ v ∗ V(v)



⇝



(p, code, end, cont− 1);

∃bie , eie , l , lend , reg ′.
[code, a) 7→ pre call instrs ∗
[a, cont) 7→ call instrs ∗ · · · ∗
[cont, end) 7→ post call instrs ∗
data 7→ (ro, table, end, table)∗
table 7→ (e, bm, em, bm) ∗
(table+ 1) 7→ (e, ba, ea, ba) ∗
[bmem , aoff ) 7→ [0; · · · ; privateval ] ∗
[aoff , emem) 7→ [0; · · · ; 0] ∗
[l , lend ) 7→ [(rwx, bmem , aoff , bmem)] ∗
[bie , eie) 7→ [(p, code, end, cont); (rwx, l , lend , lend )] ∗
r7 Z⇒ (rwx, aoff , emem , aoff )∗
r30 Z⇒ wadv ∗ V(wadv ) ∗
r31 Z⇒ (ie, bie , eie , bie) ∗∗ (r,v)∈reg ′,

r /∈{pc,target ,r31}
r ̸∈params

r Z⇒ v ∗ V(v)



35


	Indirect sentries, informally
	The Cerise machine
	Program Logic
	Adequacy

	Logical Relation
	Context: (unityped) logical relations for capability machines
	Our logical relation for indirect sentries
	Fundamental Theorem

	Case Studies
	Counter closure
	Heap-based calling convention
	Sharing a sub-buffer

	Related Work
	Capability monotonicity
	Points-to-PCC indirect sentry capabilities
	Implementing encapsulated closures with sentry capabilities
	Implementing encapsulated closures with sealed pairs
	Cerise's flavours

	Future Work
	Secure Stack-based Calling Convention
	Technical Improvement

	Full Operational Semantics
	Full spec example call

